関西の地盤情報に基づく 防災ハザードマップ開発研究委員会

報告書

平成 31 年 3 月

公益社団法人 地盤工学会関西支部

	目次		
1章(よじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1-	1
2章	委員会活動概要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	2-	1
2.1	研究概要 · · · · · · · · · · · · · · · · · · ·	2-	1
2.2	全体 · · · · · · · · · · · · · · · · · · ·	2-	7
2.3	地震による揺れやすさと液状化検討 WG(WG1)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-	16
2.4	地震・豪雨による土砂災害検討 WG(WG2)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-	20
2.5	防災ハザードマップ検討 WG(WG3)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-	25
3章 ±	也震による揺れやすさと液状化検討⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	3-	1
3.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-	1
3.2	液状化試験と各指針の液状化強度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-	2
3.3	動的変形特性のモデル化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-	57
3.4	ー次元地震応答解析と液状化検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-	65
3.5	揺れやすさマップの構築・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-	113
3.6	線状構造物沿いの液状化危険度評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-	147
3.7	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-	165
4章 ±	也震・豪雨による土砂災害検討⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯	4-	1
4.1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-	1
4. 2	盛土における土砂災害検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-	2
4.3	自然斜面における土砂災害検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-	29
4.4	まとめ・考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4–	58
5章 [方災ハザードマップに関する研究・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-	1
5.1	ハザードマップツールの整備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-	1
5.2	線状構造物のリスク評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-	8
5.3	地盤情報 DB と被害マップを利用した盛土地の被害相関分析・・・・・・・	5-	56
6章 7	おわりに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-	1
付録1	弁天町地区の現地調査・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-	1
7.1	弁天町地区での地盤調査結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-	1
7.2	弁天町地区での常時微動アレイ観測 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-	51
7.3	弁天町地区での電気探査結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-	54
付録 2	揺れやすさマップ<試作版>・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-	59

1章 はじめに

委員長 大島昭彦 (大阪市立大学大学院 教授)

2011年3月の東北地方太平洋沖地震や2015年9月の関東・東北豪雨など、地震や豪雨などの自然災害が多発し、特に昨年は、6月の大阪府北部地震、7月の西日本豪雨、9月の台風21号、北海道胆振東部地震と大きな地震・豪雨災害が続き、地盤災害が多発している。

このような近年の自然災害の規模・頻度を鑑みて、引き続き国土強靭化が進められており、その中で も、より正確な災害リスクを捉えるためには地盤情報を取り入れた防災ハザードマップの整備が重要と 考えられる。特に関西では各機関の地盤情報を集約した「関西圏地盤情報データベース」及びそれを基 に構築した 250m メッシュ地盤モデル「関西圏地盤情報ライブラリ」が整備されており、地盤情報を有 効に活用することができる状態にある。

そこで,「関西の地盤情報に基づく防災ハザードマップ開発研究委員会」を設立し,平成28年4月~ 平成31年3月までの3年間において,地震や豪雨による地盤災害の被害予測や防災対策,防災ハザー ドマップの開発に関する研究活動を行った。

本研究委員会は,関西支部会員の技術者・研究者が結集し,関西圏地盤情報データベースを有効活用 して自然災害に対する自然地盤,土構造物の被害予測と防災対策について調査研究し,その成果を用い て防災ハザードマップを開発し,具体的に社会に発信することを目的とした。防災ハザードマップを開 発していく上で,被害予測や防災対策について社会にわかりやすく情報発信できるようマップの表現や 情報の発信方法等の研究を行い,市民の防災意識の向上や防災行政の一助となることを目指したもので ある。

本研究委員会では以下のような研究テーマを基に3つのWGを立ち上げ、具体的な研究活動を行った。 WG1:地震による揺れやすさと液状化検討(主査:京都大学防災研究所 後藤浩之准教授)

WG2: 地震・豪雨による土砂災害検討(主査:近畿大学 河井克之准教授)

WG3:防災ハザードマップ検討(主査:明石工業高等専門学校 鍋島康之教授)

WG1 では、各施設管理者に対して地盤特性を反映した対策を今後進めていくうえで有用な成果を得 ることを目指し、関西地方における地盤の揺れやすさ、及び液状化評価手法を検討した。WG2 では、 地震と降雨の複合的作用として、①降雨による土構造物の品質(耐震性)変化、②地震履歴を受けた土 構造物の降雨時安定性に着目し、過去の災害事例の整理や現地計測を通して、地盤情報の有益な活用法 を検討した。WG3 では、市民の生存のための情報集積図としての重要な利用目的を鑑みた防災ハザー ドマップの研究として、ハザードマップの作成、線状構造物のリスク評価、盛土地の被害相関分析を検 討した。また、西宮市と共同で兵庫県南部地震における宅地地盤の被害状況と地盤特性に関する研究を 進め、その関連性を評価した。

本研究委員会では、各種構造物に対する地盤の揺れやすさを測定するため、これまでに鉄道盛土部や 大規模盛土造成地、上町台地周辺、鉄道沿線地区において、常時微動観測や土壌水分計の設置・計測を 現地調査として実施した。また、うめきた、尼崎、弁天町などのボーリング調査で採取した試料を用い て、液状化試験を行い、強度特性の評価を実施した。さらに、平成 30 年 6 月に発生した大阪北部地震 の被害調査を実施した。 これらの研究活動の成果について、本報告書に取りまとめている。本研究の成果が、地盤災害等の防 災分野に携わる技術者・管理者をはじめ、研究者や学生の皆様の参考となれば幸いである。最後に、本 調査研究に携わった委員各位の献身的な努力に対して深甚なる感謝の意を表する。

2章 委員会活動概要

2.1 研究概要

2.1.1 研究概要

2011 年 3 月の東北地方太平洋沖地震災害や 2015 年 9 月の関東・東北豪雨災害など,地震や豪雨などの自然災害が多発し,甚大な被害を引き起こしている。

このような近年の自然災害の規模・頻度を鑑みて、引き続き国土強靭化が進められており、その中で も、より正確な災害リスクを捉えるためには地盤情報を取り入れた防災ハザードマップの整備が重要と 考えられる。特に関西では各機関の地盤情報を集約した「関西圏地盤情報データベース」及びそれを基 に構築した 250 メッシュ地盤モデル「関西圏地盤情報ライブラリ」が整備されており、地盤情報を有効 に活用することができる状態にある。

そこで、本研究委員会では、関西支部会員の技術者・研究者が結集(次頁の表参照)し、関西圏地盤 情報データベースを有効活用して自然災害に対する自然地盤、土構造物の被害予測と防災対策について 調査研究し、その成果を用いて防災ハザードマップを開発し、具体的に社会に発信することを目的とし ている。防災ハザードマップを開発していく上で、被害予測や防災対策について社会にわかりやすく情 報発信できるようマップの表現や情報の発信方法等の研究を行い、市民の防災意識の向上や防災行政の 一助となることを目指している。

表-2.1.1 委員構成

	WG	氏名	ふりがな	所属	部署
1 委員長	123	大島 昭彦	おおしま あきひこ	大阪市立大学	大学院工学研究科
2	2 3	石田 優子	いしだ ゆうこ	立命館大学	総合科学技術研究機構
3	3	内田 晶夫	うちだ あきお	㈱オリエンタルコンサルタンツ	関西支店 国土技術部
4	2	遠藤 信之	えんどう のぶゆき	㈱ニュージェック	港湾・海岸グループ 沿岸環境チーム
5	2	小田 和広	おだ かずひろ	大阪産業大学	工学部都市創造工学科
6 幹事	1	甲斐 誠士	かい せいじ	㈱ダイヤコンサルタント	関西支社 地盤技術部
7	1	景山 健	かげやま けん	基礎地盤コンサルタンツ㈱	関西支社 地盤技術部
8	1	春日井 麻里	かすがい まり	(一財)地域地盤環境研究所	研究開発部門 地盤情報グループ
9 WG2主査	2	河井 克之	かわい かつゆき	近畿大学	理工学部社会環境工学科
10	2	川下 光仁	かわした みつひと	ジェイアール西日本コンサルタンツ㈱	大阪本社 技術本部
11 WG1主査	(1) (3)	後藤 浩之	ごとう ひろゆき	京都大学	防災研究所
12	1	佐川 厚志	さがわ あつし	中央復建コンサルタンツ㈱	大阪本社 環境・防災系部門 地盤・防災グループ
13	3	志賀 直樹	しが なおき	国際航業㈱	技術本部 社会インフラ部
14 WG3副連絡員	3	鈴木 達也	すずき たつや	㈱ニュージェック	技術開発グループ 耐震チーム
15	2	立石 亮	たていし りょう	㈱アサノ大成基礎エンジニアリング	関西支社
16	3	田渕 圭	たぶち けい	応用地質㈱	関西支社
17	1	堤 杏紗	つつみ あずさ	㈱ニュージェック	港湾・海岸グループ 港湾・空港チーム
18 WG2連絡員	2	豊福 恒平	とよふく こうへい	国際航業㈱	技術本部 技術管理部
19	2	鳥居 宣之	とりい のぶゆき	神戸市立工業高等専門学校	都市工学科
20 WG1連絡員	1	永井 久徳	ながい ひさのり	㈱鴻池組	土木事業本部 技術部 設計技術課
21	23	中西 典明	なかにし のりあき	復建調査設計㈱	大阪支社
22 WG3主査	2	鍋島 康之	なべしま やすゆき	明石工業高等専門学校	都市システム工学科
23 幹事	2	南部 啓太	なんぶ けいた	協和設計(㈱	防災グループ
24	2	西浦 清貴	にしうら きよたか	㈱オリエンタルコンサルタンツ	関西支店 国土技術部 技術主查
25	(①代理) ③	濱田 晃之	はまだ てるゆき	(一財)地域地盤環境研究所	研究開発部門 地盤情報グループ
26	3	林 健二	はやし けんじ	㈱フォレストエンジニアリング	代表取締役
27	123	阪東 聖人	ばんどう まさと	西日本旅客鉄道㈱	構造技術室 斜面・土構造グループ
28	1	深井 晴夫	ふかい はるお	基礎地盤コンサルタンツ㈱	関西支社 地盤技術部
29	2	深川 良一	ふかがわ りょういち	立命館大学	理工学部都市システム工学科
30 WG3連絡員	3	福塚 健次郎	ふくつか けんじろう	㈱アーステック東洋	地質部防災地質課
31	3	三田村 宗樹	みたむら むねき	大阪市立大学	大学院理学研究科
32	2	宮田 和	みやた かず	清水建設㈱	土木技術本部 基盤技術部
33	3	山岡豊	やまおか とよ	大阪府	政策企画部 万博誘致推進室 整備推進グループ
オブサーバー	1	平井 俊之	ひらい としゆき	(株)ニュージェック	港湾・海岸グループ
オブサーバー	1	中嶋 勲雄	なかじま いさお	応用地質(株)	中部支社 技術部

所属:平成31年3月現在

本研究委員会では以下のような研究テーマを基にいくつかの検討グループを立ち上げ,具体的な調査 研究活動を行っている。

①地震による揺れやすさと液状化検討

②地震・豪雨による土砂災害検討

③防災ハザードマップ検討

以下,各WGの研究目的と成果物のイメージを示す。

WG1「地震による揺れやすさと液状化検討」

2011 年 3 月 11 日に発生した東北地方太平洋沖地震による甚大な災害を背景として,我が国における 自然災害への認識が近年高まりつつある。関西地方では兵庫県南部地震による災害を契機に強い地震動 への対策が進められてきたが,南海トラフでの発生が予想される海溝型地震や,上町断層・中央構造線 等の内陸活断層の地震に関する知見が深まる中で,継続時間の長い地震動による液状化や地表断層等, 多角的な地震対策が求められつつある。このような背景のもと,地域毎のハザードレベルを反映した効 果的な対策を進めるためにも,地域の地盤特性を把握することは必要不可欠である。本 WG では,各施 設管理者に対して地盤特性を反映した対策を今後進めていくうえで有用な成果を得ることを目指し,関 西地方における地盤の揺れやすさ,および液状化評価手法を検討する。

WG2「地震・豪雨による土砂災害検討」

地盤災害の一つである土砂災害は,地質,地形,水理学的条件などの素因と,降雨や地震といった誘 因が重なったときに発生すると言われている。前者は本研究委員会が対象としている地盤情報として得 られるものであり,誘因としての降雨や地震の作用を明らかにすることが防災ハザードマップ開発への 有効な手段であると考えられる。これまで降雨に対する斜面崩壊ハザードマップは,ある程度整備され, 一般的に普及しているものの,地震と降雨が複合的に作用する条件下での斜面崩壊に関する知見はまだ 十分とは言えず,何らかの補正係数を乗じて既存のハザードマップを援用する以外になかった。ここで は,特に地震と降雨の複合的作用として,①降雨による土構造物の品質(耐震性)変化,②地震履歴を受 けた土構造物の降雨時安定性に着目し,過去の災害事例の整理や現地計測を通して,地盤情報の有益な 活用法を検討するとともに,防災ハザードマップの「見方」を提供する。

WG3「防災ハザードマップ検討」

本委員会や、これまでに活動してきた委員会では、地盤情報データベース(以下 DB と略す)を活用し、 防災ハザードマップ(以下 HM と略す)に関する様々な研究が行われている。

防災ハザードマップとは、市民の生存のための情報集積(図)だと考えると、地盤工学会関西支部とし てこれらの研究成果を社会的に還元することが必要であり(アウトリーチ活動)、本 WG ではその手法に ついて研究を行う。特に、関西圏として広範囲で地盤情報 DB が整備されている利点を活用し、自治体 の枠を超えた防災 HM として、市民にわかりやすく還元できるツールを開発することの意義は大きい。 また、市民向けだけでなく、社会資本整備に関わる専門家があらゆる局面で地盤防災の観点から検討し、 自己の研究・業務・活動に取り込むことの出来る情報プラットホームの構築が望まれる。さらに、地盤 情報 DB を活かした、ライフライン・構造物に関する耐震評価を行い、南海トラフ巨大地震に対す耐震 対策についての提言を行う。

具体的な活動内容として、以下の小 WG を設けて課題に取り組む。

(1)ハザードマップデータ作成・公開

地盤情報 DB を活用した研究成果について、データセット公開について検討を行う。

(2)線状構造物のリスク評価

地盤情報 DB を活用し、地震時に特徴的な機能障害が指摘されている線状構造物のリスク評価手法に ついて検討を行う。特に、鉄道のような線状構造物は築造年代が古い土構造物が含まれ、発災後の復興 にも多大な影響を及ぼすため、研究対象とする。広域における土構造物のマクロ評価法の有効性につい て提言を行う。本研究課題については、JR 西日本とも連携して研究を行う。

(3)盛土地の被害相関分析

西宮市域において,兵庫県南部地震時の建物被害状況を再整理し,大規模造成地マップや地盤情報 DB を活用して宅地基礎地盤特性との関係について分析を行う。大規模造成地マップに記載していない 造成地の存在や,盛土の耐震対策による建物被害の軽減の有効性について提言を行う。本研究課題につ いては,西宮市との共同研究を行う。

2.1.2 研究内容

WG1「地震による揺れやすさと液状化検討」

大阪府地盤データ等の動的変形特性試験,および液状化試験データに基づき,土質区分に応じた地盤 特性のモデル化を進めた。揺れやすさや液状化評価の高度化にあたっては,詳細な地盤情報が得られて いるうめきたサイト・住之江サイトを対象に,等価線形解析・逐次非線形解析による動的応答解析を試 みるとともに,各種設計式による液状化評価手法の比較・検討を行った。地域の揺れやすさを評価する ため,複数の観測地震動を入力して地盤応答解析を実施し,系統的な傾向について明らかにした。揺れ やすさや液状化評価の高度評価法の検討にあたり,弁天町サイトを対象として詳細な地盤調査・土質試 験・逐次非線形解析による動的応答解析を試みた。

WG2「地震・豪雨による土砂災害検討」

地震と降雨の複合的作用を整理するために、次の二つの検討課題を掲げた。

斜面災害における豪雨と地震の複合的影響

② 盛土地盤の揺れやすさ

前者については、地震後の雨による斜面崩壊事例がある阪神大震災、地震前の降雨が地震時の斜面災 害に影響を及ぼした中越地震での事例を再整理するとともに、熊本地震での斜面崩壊事例を地震と降雨 の複合的作用の枠組みの中で整理できるよう資料収集を行った。後者として、盛土構造物の施工から供 用に至る長期的な揺れやすさの変化に注目し、大規模盛土造成地における振動特性を調べるべく、現地 調査を行った。

WG3「防災ハザードマップ検討」

具体的な研究課題毎に小WGを設け、各メンバーが研究目標・活動内容・活動計画に基づき、3年間の活動を集約し、まとめることができた。主要な成果を以下に列挙する。

(1)ハザードマップデータ作成・公開

地盤情報 DB を活用した研究成果について、データセット公開について検討を行う。他の WG よりア ウトプットされるデータについて、公開ツールの著作権の取扱、公開時の解説文の作成方法について検 討した。そして、一般向け、専門家向けとしても利用できるような公開データを作成した。

(2)線状構造物のリスク評価

地震被害時には,線状構造物,特に鉄道では,部分的な機能障害が一定の区間全体の機能不全に陥る ことや,剛構造物(橋梁等)と柔構造物(盛土・斜面等)では耐震性の強弱のコントラストが大きいこと,巨 大地震時には関西圏の機能不全が,日本列島東西の交通遮断につながるなどの影響が大きいことから, 今回の研究対象を鉄道の盛土とすることとした。

現地踏査を行い,建設過程・年代の把握,構築前の土地利用状況,地盤情報 DB による地盤特性の把握を行った。この内,盛土構造物が軟弱地盤上にある 2 区間について他 WG と合同で常時微動特性の把握を行った。また,平成 30 年 6 月 18 日に発生した大阪府北部を震源とする地震直後に,研究対象としていた大阪環状線ならびに東海道線の緊急調査を行った。

そして,道路盛土で用いられているリスク評価方法を参考にした鉄道盛土のマクロ評価法と,盛土の 南海トラフ地震をモデルとしたケーススタディ解析を組み合わせる手法を提案し,大阪環状線の鉄道盛 土の被害予想を行い,予想される被害レベルを可視化する方法を提案した。

(3)盛土地の被害相関分析

西宮市と共同で,兵庫県南部地震時の建物被害状況および盛土区域の被害状況の調査を行った。また, 西宮市が公開している大規模造成地マップ以外の造成地についても旧地形図をもとに抽出を行うとと もに,宅地盛土耐震対策事業について調査を行った。

兵庫県南部地震時の建物被害状況については建築研究所・日本建築学会近畿支部・日本都市計画学会 近畿支部などへ資料収集の協力を仰ぎ,データの提供ならびに使用承諾をいただいた。これらをもとに 西宮市の大規模造成地の建物被害の状況について,造成地以外の建物被害との比較を行った。

2.1.3 研究成果

WG1「地震による揺れやすさと液状化検討」

地域の地震ハザードの評価にあたっては、地域の地盤特性を正しく把握することが重要である。地域 の地盤調査データを収集し、少なくとも土質区分毎に整理できることが望ましい。大阪の場合は、地盤 情報データベース等を参照することで、これらの評価を進めることができるものと考えられる。

地盤の応答特性を評価する上では、土質区分毎の動的変形特性、ならびに液状化強度のモデル化が必要である。また、等価線形解析や逐次非線形解析といった複数の解析手段による評価が可能な場合には、 結果の妥当性、精度の検証といった目的のため、複数の結果を参照することが望ましい。液状化評価に おいても道路橋示方書の式のみでなく、複数の結果を参照することが望ましい。

いずれの評価においても、現地において詳細な地盤調査を実施することが最善であることは言うまでもないが、評価対象の目的や重要度を鑑みて事業者の判断のもと最適な現地調査を進める必要がある。

WG2「地震・豪雨による土砂災害検討」

土砂災害リスクに及ぼす地震と豪雨の複合的作用を検討する上で、素因と誘因の位置づけを明確にし ておく必要がある。過去の被災事例の分析から得られるのは、地震もしくは降雨の誘因としての作用で あり、それぞれが素因としての含水状態や密度を変化させている可能性に念頭を置きながら、以下の項 目を遂行していく。

1) 過去の被災事例の収集・分析による、災害リスク評価への地盤情報活用法の模索

2) 既存構造物の品質評価手法の確立と経年変化傾向の把握

WG3「防災ハザードマップ検討」

本研究委員会を含め、これまでの地盤情報 DB を活用した防災 HM・ツールの研究成果について、本 来の目的「市民の生存のための情報発信」を念頭に、地盤工学分野からの社会還元として防災 HM・ツ ールを公開することが望ましい。

また,社会資本整備・ライフライン分野へもこれらのデータを利用できるような形式で提供を行うと ともに,データを活用した評価手法について研究を行い,被害低減のために必要な提言を行う事が望ま しい。

今後予想される南海トラフ巨大地震災害を考えると、被害の予想される住宅地や道路・鉄道、ライフ ラインの機能を事前対策によって確保することは不可能であり、重要度・被害程度に応じて事前の対策 を考えていく必要がある。そのためには、地盤条件を考慮した被害程度、被害を低減させるレベル、重 要度の3つの観点によって、現状と目標(社会的要請)のギャップを把握し、地盤工学会として必要な提 言を行うことが望ましい。

2.2 全体

2.2.1 問題意識

2011年3月に発生した東北地方太平洋沖地震や,2015年関東・東北豪雨,2016年熊本地震,2017 年九州北部豪雨に加えて,本年においても西日本豪雨,大阪北部地震,北海道胆振東部地震など, 大規模な自然災害が多発しており,地震や豪雨の複合災害など,頻発化・大規模化・多様化する自 然災害への対策が喫緊の課題である。

2.2.2 目的

本研究委員会の目的は,地震被害予測や防災対策に関する技術者・研究者が結集し,近年の激甚 化する地震や豪雨などの自然災害による災害リスクをより正確に捉えるために,自然災害に対する 自然地盤,土構造物の被害予測と防災対策について調査・研究して,それらを社会に分かり易く情 報発信する防災ハザードマップを開発することである。

2.2.3 活動内容と体制

多様化する自然災害のリスクを捉えて,情報発信するための防災ハザードマップを開発するため に、本研究委員会では以下のような研究テーマを基にいくつかの検討グループを立ち上げ,具体的 な調査研究活動を行っている。

WG1:地震による揺れやすさと液状化検討WG2:地震・豪雨による土砂災害検討

WG3:防災ハザードマップ検討

- 委員長 大島昭彦 大阪市立大学大学院工学研究科 教授
- WG1主查 後藤浩之 京都大学防災研究所 准教授
- WG2主查 河井克之 近畿大学理工学部 准教授
- WG3主査 鍋島康之 明石工業高等専門学校都市システム工学科 教授

2.2.4 活動実績

平成 28 年度

・準備委員会

日 時:2016年5月12日(木)16:30-18:00
場 所:大阪市立大学 大島研究室
出席者:大島委員長,他7名
議 題:委員長挨拶 委員構成

今後の進め方

現場見学会について

- ·第1回全体委員会
 - 日 時:2016年6月17日(金)14:00-17:00
 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト102教室
 出席者:大島委員長,他21名
 議 題:委員長挨拶 委員紹介
 - 話題提供(3件) 今後の進め方(検討内容など) 現場見学会について
- ·第2回全体委員会
 - 日 時:2016年9月16日(金)14:00-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
 - 出席者:大島委員長,他19名
 - 議 題:委員長挨拶
 - 委員紹介(前回欠席者,新規追加委員)

話題提供

- (大島委員長:長野県諏訪市の地盤調査結果と熊本県益城町の地盤調査計画)
- (福塚委員:ハザードマップツールのデモンストレーション)

作業テーマ(以下の3WG)の決定

①地震による揺れやすさと液状化検討

②地震・豪雨による土砂災害検討

③防災ハザードマップ検討

7/23~24 現場見学会報告

- ·第3回全体委員会
 - 日時:2016年12月16日(金)14:00-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
 - 出席者:大島委員長,他22名
 - 議 題:委員長挨拶

話題提供

(小田委員:ゲリラ豪雨に対応した道路のり面監視方法に関する研究)

(河井委員:地盤工学から観た河川堤防の安定性評価の現状)

WG のチーム編成の決定

各 WG での小会議(主査,連絡員の決定,WG の日程調整など)

熊本地震の地盤増幅特性の速報 予算執行状況

- ·第4回全体委員会
 - 日 時: 2017年3月24日(金) 14:00-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
 - 議 題:委員長挨拶

話題提供

(後藤 WG1 主査: 2016 年熊本地震における益城町の非線形地盤震動特性) (大島委員長: 2016 年熊本地震における益城町の地盤調査と常時微動観測結果) 各 WG からの作業報告

(WG1:地震による揺れやすさと液状化検討)

- (WG2:地震・豪雨による土砂災害検討)
- (WG3:防災ハザードマップ検討)

予算執行状況

平成 29 年度の委員会工程

- ·現場見学会
 - 日 時:2016年7月23日(土)~24日(日) 場 所:長野県諏訪市 出席者:大島委員長,他13名
 - 内 容:常時微動観測や地盤調査など

平成 29 年度

- ・第1回 全体委員会
 - 日 時:2017年6月12日(月)14:00-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
 - 出席者:大島委員長,他,計22名
 - 議 題:委員長挨拶

話題提供

(豊福委員:阿蘇大橋地区斜面防災対策工事の取り組み)

(鍋島主査:和歌山市北部の大規模造成地における常時微動特性)

各 WG からの報告

(WG1:地震による揺れやすさと液状化検討)

- (WG2:地震・豪雨による土砂災害検討)
- (WG3:防災ハザードマップ検討)

JR西日本業務委託

Kansai Geo-Symposium 2017

尼崎市築地地区の地盤調査

現場見学会

- 第2回 全体委員会
 - 日 時:2017年9月15日(金)14:00-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト104 教室
 - 出席者:大島委員長,他,計18名
 - 議 題:委員長挨拶

話題提供

(石田委員:世界遺産「熊野参詣道」の防災観光マップ)

(鈴木委員:地震応答解析手法の比較)

- 各 WG からの報告
 - (WG1:地震による揺れやすさと液状化検討)
 - (WG2:地震・豪雨による土砂災害検討)
 - (WG3:防災ハザードマップ検討)
- 現場見学会
- JR 西日本業務委託
- 予算執行状況
- ·第3回 全体委員会
 - 日 時:2017年12月11日(月)14:00-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
 - 出席者:大島委員長,他,計22名:JGS(+14名:KG-R)
 - 議 題:委員長挨拶
 - KG-R・関西広域地盤研究部会の研究報告

話題提供

(常田先生:地盤の液状化評価の起源-ルーツを知り,惰性で流されない-)

(林委員:ハザードマップの利活用)

前回委員会の議事録確認

各 WG からの報告

(WG1:地震による揺れやすさと液状化検討)

(WG2:地震・豪雨による土砂災害検討)

(WG3:防災ハザードマップ検討)

現場見学会報告

予算執行状況

・第4回 全体委員会

日 時:2018年2月23日(金)14:00-17:00

場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室

- 出席者:大島委員長,他,計19名
- 議 題:委員長挨拶

前回委員会の議事録確認

話題提供

(濱田委員:道路構造物被害想定と整理事例)

(永井委員: WG1 液状化に関する研究報告)

各 WG からの報告

(WG1:地震による揺れやすさと液状化検討)

(WG2:地震・豪雨による土砂災害検討)

(WG3:防災ハザードマップ検討)

常時微動観測結果

H29JR 西日本成果報告書

- 現地調査に関するケーススタディ
- 予算執行状況
- ·現場見学会
 - 内 容:熊本地震,九州北部豪雨の被害箇所における現地調査
 - 日 時:2017年10月27日(金)~29日(日)
 - 場 所:熊本県,大分県,福岡県
 - 参加者:大島委員長,他,計12名
 - ルート:【初日】

益城町中心部の住宅被害,地震断層,阿蘇大橋落橋・斜面崩壊現場 など

2日目】

東海大学阿蘇キャンパス,高野台地区地すべり(京大火山研究所周辺) 阿蘇市狩尾地区の鉛直陥没

日田市花月川橋梁災害復旧,小野川沿い斜面崩壊現場 など

【3日目】

赤谷川等の河川沿い斜面崩壊,氾濫,土石流・流木被害現場 など

·現場調査

常時微動調査①

- 内 容:常時微動観測
- 日時:2017年11月7日(火),11月22日(水)
- 場 所:西九条~安治川口地区(11/7) 京橋~桜ノ宮地区(11/22)

参加者:大島委員長,他,計12名(11/7,11/22両日とも) <u>常時微動調査②</u>

- 内 容:猪名川盛土造成地での常時微動観測
- 日 時:2017年12月5日(火)
- 場 所:兵庫県川辺郡猪名川町
- 参加者:河井,宫田,豊福,遠藤,堤
- 調 査:16地点

常時微動調査③

- 内容:上町台地での常時微動観測
 日時:2018年1月6日(土)~8日(月)
 場所:大阪市,守ロ市,門真市,東大阪市,八尾市
 参加者:大島,永井,深井,南部,甲斐,佐川,春日井,大阪市大学生5名
 調査:197地点
- ・京都大学(JR西日本寄付講座)主催 第14回市民防災講座-災害リスクを考える-講演 平成29年10月21日 大島委員長

平成 30 年度

·第1回全体委員会

- 日 時: 2018年5月15日 (火) 14:00-17:00
- 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
- 出席者:大島委員長,他,計21名
- 議 題:委員長挨拶

話題提供

(遠藤委員:実証実験による破砕瓦の土圧特性の把握)

- (田渕委員:西宮市の大規模盛土造成地の建物被害状況)
- 各 WG からの報告
 - (WG1:地震による揺れやすさと液状化検討)
 - (WG2:地震・豪雨による土砂災害検討)
 - (WG3:防災ハザードマップ検討)
 - Kansai Geo-Symposium 2018
 - 弁天町地区での地質調査
 - 予算執行
 - 今後の工程
- ・第2回全体委員会

日 時:2018年8月27日(月)14:00-17:00

場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室 出席者:大島委員長,他,計21名

議 題:委員長挨拶

話題提供

(後藤主査, 鍋島主査, 河井主査:大阪北部地震の被害調査) 各 WG からの報告

(WG1:地震による揺れやすさと液状化検討)

(WG2:地震・豪雨による土砂災害検討)

(WG3:防災ハザードマップ検討)

弁天町地区での地質調査結果

災害関連の委員会成果への範囲

今年度の現場見学会

予算執行状況

今後の工程

·第3回全体委員会

- 日 時: 2018年12月25日 (火) 14:00-17:00
- 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
- 出席者:大島委員長,他,計17名
- 議 題:委員長挨拶

話題提供

各 WG からの報告

- (WG1:地震による揺れやすさと液状化検討)
- (WG2:地震・豪雨による土砂災害検討)
- (WG3:防災ハザードマップ検討)
- 最終委員会報告書の目次構成
- 来年度の委員会成果報告会
- 現地見学会報告
- 予算執行状況

今後の工程

- ·第4回全体委員会
 - 日 時:2019年3月1日(金)14:00-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト101 教室
 - 出席者:大島委員長,他,計21名
 - 議 題:委員長挨拶

話題提供

各 WG からの報告

(WG1:地震による揺れやすさと液状化検討)
(WG2:地震・豪雨による土砂災害検討)
(WG3:防災ハザードマップ検討)
最終委員会報告書
来年度の委員会成果報告会
予算執行状況
地盤工学研究発表会
今後の工程

- ●現地調査
- ・各WGの活動概要に記載する。

●Kansai Geo-Symposium 2018 への論文投稿・発表

【委員会報告:大島委員長,WG1報告:永井委員,WG2報告:河井主査,WG3報告:鍋島主査】 【WG1】

①液状化試験と各指針による強度の比較

発表者:深井委員

②地盤の非線形応答解析結果に及ぼす変形特性モデルの影響 -大阪地域を事例として-発表者:後藤先生

WG2

①兵庫県丹波市周辺を例とする豪雨時のハザードマップ

発表者:小田先生

[WG3]

①阪神地域を例とした鉄道構造物の巨大地震リスクに関する一考察 発表者:鍋島先生

●現場見学会

内 容:平成 30 年 7 月西日本豪雨の被害箇所における現地調査

- 日 時:2018年11月9日(金)~11日(日)
- 参加者:大島委員長,他,計17名
- ルート:【初日】

岡山県倉敷市真備町地区の河川堤防破堤,市街地被災状況など 広島県 安芸幸崎~忠海間の土砂災害現場

山陽本線本郷~河内間の土砂災害現場

【2 日目】

広島県海田町木谷川の土石流被害現場

広島県坂町小屋浦地区天地川の土石流被害現場 愛媛県伯方島地区の土石流被害現場

【3 日目】

愛媛県菅田地区の橋梁損壊,斜面崩壊,EPS 道路基礎損傷,など 鹿野川ダム工事現場 野村ダム擁壁損傷 明間地区の擁壁損壊,斜面崩壊,土石流など

・京都大学(JR西日本寄付講座)主催 第17回市民防災講座-地震・津波災害に備える-講演 平成30年9月15日 鍋島主査

2.2.5 研究の総括

各 WG で常時微動観測や液状化試験,大規模盛土造成地での水位計設置など,各種調査や試験を 実施した。また,弁天町地区で地盤調査を実施した。

一次元地震応答解析や液状化検討を実施し、地盤の揺れやすさマップを構築して、鉄道路線沿いの液状化危険度評価を行った。斜面災害では、兵庫県南部地震の事例や熊本地震の斜面崩壊状況から、地震と降雨の複合災害について検討し、斜面崩壊の分布と地形・地質特性の関係等を検討した。 大規模盛土造成地について、現地調査結果をとりまとめて造成盛土の層厚と常時微動特性との関係について検討した。地盤情報データベースを活用した線状構造物のリスク評価を行い、兵庫県南部地震時の建物被害状況を整理し、宅地基礎地盤の特性と被害状況との関係について分析を行った。また。防災ハザードマップツール作成などの研究を実施した。

2.3 地震による揺れやすさと液状化検討WG(WG1)

2.3.1 問題意識

2011年3月11日に発生した東北地方太平洋沖地震による甚大な災害を背景として,我が国における自然災害への認識が近年高まりつつある。関西地方では兵庫県南部地震による災害を契機に強い地震動への対策が進められてきたが,南海トラフでの発生が予想される海溝型地震や,上町断層・中央構造線等の内陸活断層の地震に関する知見が深まる中で,継続時間の長い地震動による液状化や地表断層等,多角的な地震対策が求められつつある.このような背景のもと,地域毎のハザードレベルを反映した効果的な対策を進めるためにも,地域の地盤特性を把握することは必要不可欠である。

2.3.2 目的

関西地方で予想される様々な大地震に対して多角的な対策を講じるために,関西地方の地盤特性 を反映したハザードモデル提案の一環として,関西地方における地盤の揺れやすさ,および液状化 評価手法を検討する。各施設管理者に対して地盤特性を反映した対策を今後進めていくうえで有用 な成果を得ることを目指す。

2.3.3 活動内容と体制

具体的な作業では、①地盤特性のモデル化、②動的応答解析、③液状化評価のそれぞれについて 各メンバーが検討作業を進めるとともに、共通の対象地点についてその評価を試行する。最終的に 空間的(面的)なハザード評価を進めるにあたり、課題点を明らかにする。

<メンバー>

大島	昭彦	大阪市立大学(委員長)
後藤	浩之	京都大学(WG1主査)
永井	久徳	(株)鴻池組(WG1連絡員)
甲斐	誠士	(株)ダイヤコンサルタント
景山	健	基礎地盤コンサルタンツ(株)
春日井	麻里	(一財)地域地盤環境研究所
佐川	厚志	中央復建コンサルタンツ (株)
堤	杏紗	(株)ニュージェック
阪東	聖人	西日本旅客鉄道(株)
深井	晴夫	基礎地盤コンサルタンツ(株)
平井	俊之	(株)ニュージェック (オブザーバー)
中嶋	勲雄	応用地質(株)(オブザーバー)

2.3.4 活動実績

平成 28 年度

・第1回WG1会議

日時:2017年3月7日(火)14:00-17:00
 場所:地盤工学会関西支部 会議室
 出席者:大島委員長,後藤主査,他,全10名
 議題:大島委員長,後藤主査挨拶
 南海トラフ委員会の研究成果紹介
 液状化試験結果の報告

大阪府の動的変形係数試験について

次年度以降の作業内容について

平成 29 年度

- ・第1回 WG1 会議
 - 日 時:2017年5月26日(金)14:00-17:00
 - 場 所:地域地盤環境研究所 会議室
 - 出席者:大島委員長,後藤主査,他,計10名
 - 議題:委員長,主査挨拶
 動的変形試験結果・液状化強度試験結果の整理についての中間報告
 話題提供

(後藤主査:「応答スペクトルを用いた液状化判定法」

「周波数依存型等価線形化手法による簡易液状化判定法」

「1次元等価線形解析による簡易液状化解析法の提案」)

(佐川委員:鉄道設計標準の地震応答解析と液状化判定法について)

今後の作業内容,役割分担について

- ・第2回 WG1 会議
 - 日 時:2017年8月31日(木)14:00-17:00
 - 場 所:地盤工学会関西支部会議室
 - 議 題:一次元地震応答解析と液状化判定(うめきたでの解析結果) 地盤モデルのデータベース化
 - ・新規収集のボーリング位置と試験採取位置について
 - ・動的試験の物性値について

今後の作業内容について

- ・第3回 WG1 会議
 - 日時:2017年11月30日(木)9:15-12:00
 - 場 所:地盤工学会関西支部会議室

出席者:大島委員長,後藤主查,他,計9名

- 譲:地盤モデルのデータベース化

 一次元地震応答解析と液状化判定

 動的変形特性のモデル化
 液状化強度曲線の推定方法
 上町台地での常時微動測定
 尼崎市築地地区の地下水位低下による液状化対策効果
 今後の作業内容について
- ・第4回 WG1 会議
 - 日時:2018年1月26日(金)9:15-12:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:後藤主查,他,計8名
- ·現地調查(常時微動観測)
 - 日時:2018年1月7日(日),1月8日(月)9:00-17:00場所:上町台地の周辺地域
 - 出席者:大島委員長,他,計9名(1/7),計10名(1/8)

平成 30 年度

- ・第1回 WG1 会議
 - 日 時:2018年4月24日 (火) 14:00-17:00
 - 場 所:地域地盤環境研究所 会議室
 - 出席者:大島委員長,後藤主查,他,計9名
 - 議 題:Kansai Geo-Symposium への投稿について
 - 今年度の活動方針について
 - ・揺れやすさマップの構築
 - ・ 弁天町調査地での現地調査, 地震応答解析, 液状化解析
 - ・鉄道路線沿いの液状化危険度評価
- ・第2回 WG1 会議
 - 日 時:2018年7月20日(金)14:00-17:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:大島委員長,後藤主査,他,計9名
 - 議 題:揺れやすさマップの構築について

弁天町調査地での現地調査,地震応答解析,液状化解析について 鉄道路線沿いの液状化危険度評価について その他

- ・「大阪北部の地震(M6.1)と地盤震動」について話題提供
- ・Kansai Geo-Symposium へ投稿した論文2件について報告
- ・第3回 WG1 会議
 - 日 時: 2018年12月6日(金)14:00-17:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:大島委員長,後藤主查,他,計7名
 - 議題:揺れやすさマップの構築について 一次元地震応答解析と液状化検討について 鉄道路線沿いの液状化危険度評価について 成果報告書の目次案,役割分担について
- ・第4回 WG1 会議
 - 日 時:2019年2月13日(水)15:00-17:00
 - 場 所:大阪市立大学 大島研究室
 - 出席者:大島委員長,他,計7名
 - 議 題:報告書の進捗についての確認 地盤工学研究発表会への投稿内容についての確認

2.3.5 研究の総括

大阪府地盤データ等の動的変形特性試験,および液状化試験データに基づき,土質区分に応じた 地盤特性のモデル化を進めた。揺れやすさや液状化評価の高度化にあたっては,詳細な地盤情報が得 られているうめきたサイト・住之江サイトを対象に,等価線形解析・逐次非線形解析による動的応答解 析を試みるとともに,各種設計式による液状化評価手法の比較・検討を行った。地域の揺れやすさを 評価するため,複数の観測地震動を入力して地盤応答解析を実施し,系統的な傾向について明らか にした。揺れやすさや液状化評価の高度評価法の検討にあたり,弁天町サイトを対象として詳細な 地盤調査・土質試験・逐次非線形解析による動的応答解析を試みた。

2.4 地震・豪雨による土砂災害検討WG(WG2)

2.4.1 問題意識

南海トラフ巨大地震が発生すると、自然斜面及び盛土の崩壊による被害が広域にわたって発生す る事が懸念される。また、地震とは外力が異なるものの豪雨による土砂災害も各地で被害が甚大化 する傾向にある。これらの土砂災害は、地形・地質などの素因については共通する点も多いが、被 害の発生形態は異なるため、これらの要素を考慮したハザードマップとすることが防災の観点から 有効と考える。

2.4.2 目的

本 WG の目的は,自然斜面及び盛土の斜面崩壊の特性について,外力の違いや地盤特性の観点から整理・研究し,南海トラフ巨大地震による土砂災害について防災の観点から留意すべき事項を整 理し,ハザードマップとして反映することである。

2.4.3 活動内容と体制

本 WG では、構成員を①斜面災害における豪雨と地震の複合的影響検討,②施工中の大規模盛土 調査研究の2つにグループを分け、それぞれの既存データや現地計測データをもとに課題設定、研 究を推進する。

<メンバー>

大島	昭彦	大阪市立大学(委員長)
河井	克之	近畿大学(WG2主査)
豊福	恒平	国際航業(株) (WG2連絡員)
石田	優子	立命館大学
遠藤	信之	(株)ニュージェック
小田	和広	大阪大学
川下	光仁	ジェイアール西日本コンサルタンツ(株)
立石	亮	(株)アサノ大成基礎エンジニアリング
鳥居	宣之	神戸市立工業高等専門学校
中西	典明	復建調査設計(株)
鍋島	康之	明石工業高等専門学校
南部	啓太	協和設計(株)
西浦	清貴	(株)オリエンタルコンサルタンツ
阪東	聖人	西日本旅客鉄道(株)
深川	良一	立命館大学

宮田 和 清水建設(株)

2.4.4 活動実績

平成 28 年度

 日 時:2017年1月30日(月)15:00-17:00
 場 所:地盤工学会関西支部 会議室
 出席者:大島委員長,河井主査,他,全8名
 議 題:河井主査挨拶
 委員の自己紹介
 南海トラフ委員会の研究成果紹介
 活動計画について(活動目標・方向性について,具体的活動内容と進め方, スケジュール)

平成 29 年度

・第1回 WG2 会議

- 日 時:2017年5月30日(火)14:30-17:00
- 場 所:地盤工学会関西支部会議室
- 出席者:河井主查,他,計9名
- 議 題:主查挨拶
 - 話題提供

(石田委員:世界遺産「熊野参詣道」の観光防災マップ」)

WG 活動に関する各委員からの意見とりまとめ

活動内容と作業分担

- ・斜面災害における豪雨と地震の複合的影響
- ・盛土地盤の揺れやすさ
- ・第2回 WG2 会議
 - 日 時: 2017年8月10日(木) 15:00-17:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:大島委員長,河井主查,他,計8名
 - 議 題:主查挨拶

話題提供

(鳥居先生:斜面災害における豪雨と地震の複合的影響について)

WG 活動に関する各委員からの意見とりまとめ

斜面災害における豪雨と地震の複合的影響

盛土(猪名川町大規模造成盛土)

- ・第3回 WG2 会議
 - 日 時:2018年1月31日(水)15:00-17:00
 - 場 所:地盤工学会関西支部会議室

出席者:大島委員長,河井主查,他,計8名

- 議 題:主査挨拶
 - 話題提供

(河井主査:降雨時の盛土内浸透挙動~実物大盛土試験と降雨シミュレーション~) WG活動に関する各委員からの意見とりまとめ

斜面災害における豪雨と地震の複合的影響(主に熊本地震の被災データをもとに) 盛土(猪名川町大規模造成盛土調査の調査項目,内容,工程について)

- ・調査候補地の現場踏査
 - 日 時:2017年7月11日 (火) 15:00-17:00
 - 場 所:兵庫県山辺郡猪名川町肝川字畦田 地内
 - 出席者:大島委員長,河井主查,他,計8名
 - 議 題:工事概要説明・現地視察 調査計画作成にあたっての留意点 今後の予定・連絡
- ·現地調查1(常時微動観測)
 - 日 時:2017年12月5日(火)14:00-17:00
 - 場 所:兵庫県山辺郡猪名川町肝川字畦田 地内
 - 出席者:河井主查,他,計5名
- ・現地調査2(土壌水分計の設置)
 日時:2017年12月12日(火)10:00-12:00
 場所:兵庫県山辺郡猪名川町肝川字畦田 地内
 出席者:大島委員長,河井主査,他,計4名

平成 30 年度

- ・第1回 WG2 会議
 - 日 時: 2018年4月18日(水) 15:00-17:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:大島委員長,河井主查,他,計8名
 - 議 題:主查挨拶

話題提供

(中西委員:『土のう構造体』を用いた 既設盛土の耐震補強)

- WG 活動に関する各委員からの意見とりまとめ
- 活動内容と作業分担
 - ・斜面災害における豪雨と地震の複合的影響(阿蘇地方のデータ分析方法について)
 - ・盛土(猪名川町大規模造成盛土調査の調査項目、内容、工程について)
- ・第2回 WG2 会議

- 日 時:2018年8月7日(火)14:30-17:00
- 場 所:地盤工学会関西支部会議室
- 出席者:大島委員長,河井主查,他,計10名
- 議 題:主查挨拶

話題提供

(河井主査:大阪北部地震被害速報 地盤・土構造物被害について)
 WG活動に関する各委員からの意見とりまとめ
 斜面災害における豪雨と地震の複合的影響(阿蘇周辺の斜面崩壊関連データについて)
 盛土(猪名川町大規模造成盛土 微動計測調査の報告,現場状況報告)
 その他(弁天町地区の地盤調査,平成29年台風21号による斜面崩壊現場視察報告)

- ・第3回 WG2 会議
 - 日時:2018年12月11日(火)15:15-17:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:大島委員長,河井主查,他,計8名
 - 議 題:主查挨拶

話題提供

(河井主査:盛土地盤の物理探査について)

(鳥居先生:「斜面災害における豪雨と地震の複合的影響について~熊本地震とその 後の降雨による斜面崩壊事例を対象に~」)

WG 活動に関する各委員からの意見とりまとめ

盛土(猪名川町大規模造成盛土,和歌山市大規模宅地盛土 微動調査結果報告)

成果報告書の内容検討

- ・第4回 WG2 会議
 - 日 時:2019年1月29日(火)18:00-19:30
 - 場 所:国際航業(株)関西事業所会議室
 - 出席者:河井主查,他,計7名
 - 議 題:主查挨拶

WG 活動に関する各委員からの意見とりまとめ 地盤工学研究発表会への投稿について 成果報告書のとりまとめ内容検討,分担

·現地調查1(常時微動観測)

日 時:2018年6月23日(土)9:00-14:00

場 所:兵庫県山辺郡猪名川町肝川字畦田 地内

出席者:宫田委員,他,計4名

・現地調査2(表面波探査)
日時:2018年9月2日(日)9:00-14:00
場所:兵庫県山辺郡猪名川町肝川字畦田地内
出席者:河井主査,他4名(学生)

- ・現地調査3(電気探査,土壌水分計測)
 日時:2018年11月9日(日)9:30-14:00
 場所:兵庫県山辺郡猪名川町肝川字畦田 地内
 出席者:河井主査,他4名(学生)
- ・現地調査4(常時微動観測)
 日時:2018年11月18日(日)10:00-12:00
 場所:兵庫県山辺郡猪名川町肝川字畦田 地内
 出席者:鍋島主査,他,計6名
- ・現地調査5(常時微動観測)
 日時:2018年12月1日(土)~2日(日)
 場所:和歌山市北部 5地区内
 出席者:大島委員長,河井主査,鍋島主査他,計7名

2.4.5 研究の総括

豪雨と地震の複合的影響検討については,兵庫県南部地震等の調査研究事例の検討を行ったうえ で,熊本地震における斜面崩壊に関する既存データの収集・整理を行い,斜面崩壊の分布と地形・ 地質特性の関係等を検討した。

施工中の大規模盛土調査では,施工状況に対応して,常時微動測定と土壌水分計の設置,及び表 面波探査,電気探査を実施し,盛土の厚さに応じた常時微動の特性,物理探査による盛土内部の状 況を検討した。また,和歌山市北部の大規模盛土造成地の常時微動測定を行い,既存調査地区のデ ータとあわせ,大規模盛土の層厚と常時微動特性との関係について検討した。

2.5 防災ハザードマップ検討WG (WG3)

2.5.1 問題意識

本委員会や、これまでに活動してきた委員会、他の学会・協会等では、地盤情報データベース(以下DBと略す)を活用し、防災ハザードマップ(以下HMと略す)に関する様々な研究が行われている。 このうち、関西圏地盤情報ライブラリ(KG-NET)では一般市民向けにその地盤情報 DB の公開が行 われているが、防災 HM ツールとしての公開事例はまだ少ない状況である。

防災ハザードマップは、市民の生存のための情報集積だと考えると、地盤工学会関西支部として これらの研究成果を社会的に還元し、防災意識の向上を促すことが必要である(学会としてのアウ トリーチ活動)。

ライフライン防災の観点では、南海トラフ巨大地震災害時には、東海・近畿地方での交通網の断 絶は日本の太平洋ベルト地帯の東西方向、また丹後半島から紀伊半島の南北方向のロジスティクス に支障を来すことは、兵庫県南部地震時の事例からも明らかである。また、面的な拡がりをもつ地 下ライフライン(水道・ガス・通信・電気等)については、広範囲で多数の被害が発生するため、資 材や復旧勢力の不足が予想され、市民生活への影響が長期間にわたることが予想されている。

宅地防災の観点では,近年,大規模盛土造成地に対する宅地耐震事業(滑動崩落防止対策)が進め られているが,歳出・歳入一体改革が進められる中で,円滑な事業化に苦心している自治体が多い。 このため,地震時の宅地被害と地盤特性との相関性や,耐震対策の有効性について,合理的な根拠 が求められている。

いずれも,被害の予想されるすべてのライフライン・宅地を事前対策によって機能確保すること は不可能であり,重要度・被害程度に応じて事前の対策を考えてゆく必要があり,我々地盤工学界 としても,持てる見識を積極的に公開・提供してゆくことが求められる。

2.5.2 目的

以上の問題意識にもとづき,本WGの目的は,防災HM・ツールの意義を整理するとともに,こ れまでの研究成果を一般市民向けにわかりやすく公開する手法,および専門家が有効に活用できる ように公開する手法を検討し,地盤工学会からの社会還元を行うことと設定する。

また,地盤情報 DB を利用した社会インフラの耐震性評価として,重要なライフラインである鉄 道構造物に対する広域リスク評価,宅地造成地における地盤特性と建物被害の相関分析により,減 災に関する必要な提言を行う。

2.5.3 活動内容と体制

HM ツール作成小WG では、ツールに取り込むデータの収集,解説文の作成を行い、データセットの 完成を目指す。効果的な公開方法の研究、著作権に関する課題への対応を行い、関西圏地盤情報ライブ ラリ(KG-R)のウェブサイトと連携した市民向けの一般公開と、専門家向けの GIS データでの提供を行 う準備を進める。

線状構造物リスク評価小WGでは、鉄道盛土マクロ評価法と、盛土のケーススタディ解析を組み合わ せた手法を選定し、評価手法の構築を行う。地盤特性データおよび盛土構造情報の収集・整理を行う。 これらの評価手法とデータをもとに具体的な評価を行い、縦断面図形式の耐震リスク評価図としてとり まとめる。

盛土地の被害相関分析 WG では,兵庫県南部地震時の建物被害程度(建築研究所),地盤特性(地盤情報 DB より),盛土範囲(盛土抽出調査結果)等の GIS データを構築し,関連性を分析する。その結果より, 宅地盛土の耐震性向上の有効性について提言を行い,今後の宅地盛土耐震事業の施策推進に寄与するこ とを目指す。

本部会の最終アウトプットとしては,HM ツールの作成・公開,耐震リスク評価図,盛土地の被害相 関分析結果に関する研究成果等とし,論文発表も行う。ただし,一部のデータ(JR 西日本提供・西宮市 提供)については,必要に応じて非公開とする。

また、各事業者・行政機関へも、必要に応じて減災に有効な提言を行う。

活動体制は以下の通りであるが,これ以外にも他 WG や,JR 西日本,西宮市等とも連携して活動を 行う。

<メンバー>

大島昭彦	大阪市立大学(委員長)		
鍋島康之	明石工業高等専門学校(WG3主査)		
福塚健次郎	(株)アーステック東洋(WG3連絡員)		
石田 優子	立命館大学		
内田 晶夫	(株)オリエンタルコンサルタンツ		
後藤 浩之	京都大学		
志賀 直樹	国際航業(株)		
鈴木 達也	(株)ニュージェック		
田渕圭	応用地質(株)		
中西 典明	復建調査設計(株)		
濱田 晃之	(一財)地域地盤環境研究所		
林健二	(株)フォレストエンジニアリング		
阪東 聖人	西日本旅客鉄道(株)		
三田村宗樹	大阪市立大学		
山岡豊	大阪府		

2.5.4 活動実績

平成 28 年度

・第1回 WG3 会議

日 時:2017年2月1日(水)14:30-17:00
場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト103教室
出席者:大島委員長,鍋島主査,他,全10名

議 題:鍋島主查挨拶

委員の自己紹介

話題提供

(濱田委員:関西地盤情報データベース)

(福塚委員:ハザードマップツール)

- WG3の進め方(アンケート集計結果の報告,ハザードマップのコンセプト,
 - ハザードマップの作り方・見せ方,ハザードマップの活用法,
 - 他の WG との連携)
- 今後の工程

平成 29 年度

- ・第1回 WG3 会議
 - 日 時:2017年5月22日(月)14:30-17:00
 - 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト102 教室
 - 出席者:大島委員長,鍋島主查,他,計10名
 - 議 題:主查挨拶

話題提供

(林委員:地盤災害に着目した震災時緊急輸送道路網検討)

(福塚委員:防災学習システムの紹介)

西宮市の盛土地盤と被災の関連性の研究テーマについて

WG3の進め方についての討議

- ・第2回 WG3 会議
 - 日 時:2017年8月28日(月)14:30-17:00

場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト108 教室

- 出席者:鍋島主查,他,計12名
- 議 題:研究毎に小 WG を決定
 - ①地盤情報DBを活用した線状構造物のリスク評価(鉄道路線を題材として)
 ②地盤情報DBを活用した盛土地の被害相関の分析(西宮市を題材として)
 ③地盤情報DBを活用したハザードマップツール等の作成
- ・第1回小WG:地盤情報DBを活用したハザードマップツール等の開発
 - 日 時: 2017年10月23日(月)15:30-17:00
 - 場 所:地域地盤環境研究所会議室
 - 出席者:計5名
 - 議 題:ArcGIS Online

防災情報サービスプラットフォーム

関西圏地盤情報ライブラリー

当小WG における今後の方向性についての討議

討議を通してあがった今後の方向性 今後の予定

- ・第1回小WG:地盤情報DBを活用した線状構造物のリスク評価
 - 日 時:2017年12月5日(火)15:30-17:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:鍋島主查,他,計7名
 - ・検討構造物・検討区間・想定外力
 ハザードマップとしてのアウトプット
 収集資料・データの取扱い
 今後の予定
- ・第2回小WG:地盤情報DBを活用したハザードマップツール等の開発
 - 日 時:2018年1月11日(木)15:00-17:00
 - 場 所:地域地盤環境研究所会議室
 - 出席者:計6名
 - 議 題:前回の全体委員会の内容確認
 - 前回の小 WG の内容確認
 - 著作権等
 - 解説文
 - 今後の予定
- ・第2回小WG:地盤情報DBを活用した線状構造物のリスク評価
 - 日 時: 2018年1月23日(火) 14:00-17:00
 - 場 所:国際航業会議室
 - 出席者:鍋島主查,他,計7名
 - 議 題:検討区間の構造物と地盤モデル
 - 地震動
 - リスク評価方法
 - ハザードマップの表示方法

平成 30 年度

・第1回 WG3 会議

- 日 時: 2018年4月16日(月)15:00-17:30
- 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト102 教室
- 出席者:大島委員長,鍋島主查,他,計11名
- 議 題:主查挨拶
 - 小 WG1「地盤情報 DB を活用した線状構造物のリスク評価」
 - 小 WG2「地盤情報 DB を活用した盛土地の被害相関の分析」
 - 小 WG3「地盤情報 DB を活用したハザードマップツール等の開発」

Kansai Geo-Symposium 2018 の論文投稿

・第2回 WG3 会議

- 日 時:2018年8月16日(木)14:30-17:00
- 場 所:大阪駅前第2ビル6階 大阪市立大学梅田サテライト102 教室 出席者:大島委員長,鍋島主査,他,計11名

議 題:主查挨拶

阪神地域を例とした鉄道構造物の巨大地震リスクに関する一考察 大阪北部地震被害調査報告

小 WG1「地盤情報 DB を活用した線状構造物のリスク評価」

- 小 WG2「地盤情報 DB を活用した盛土地の被害相関の分析」
- ・第1回小 WG1: 地盤情報 DB を活用した線状構造物のリスク評価
 - 日 時:2018年12月4日(火)15:00-17:00
 - 場 所:大阪大学中之島センター会議室
 - 出席者:鍋島主查,他,計5名
 - 議題:線状構造物リスク評価のケーススダディ ハザードマップのまとめ方 線状構造物リスク評価のまとめ
- ・第1回小 WG3: 地盤情報 DB を活用したハザードマップツール等の開発
 - 日時:2018年12月5日(水)10:00-12:00
 - 場 所:地盤工学会関西支部会議室
 - 出席者:鍋島リーダー,他,計4名
 - 議 題:論文報告

オープンデータの整備と活用 市民へのハザードマップ公開 公開データ

2.5.5 研究の総括

具体的な研究課題毎に小WGを設け、各メンバーが研究目標・活動内容・活動計画に基づき、3年間 の活動を集約し、まとめることができた。主要な成果を以下に列挙する。

(1)ハザードマップデータ作成・公開

地盤情報 DB を活用した研究成果について、データセット公開について検討を行う。他の WG よりア ウトプットされるデータについて、公開ツールの著作権の取扱、公開時の解説文の作成方法について検 討した。そして、一般向け、専門家向けとしても利用できるような公開データを作成した。

(2)線状構造物のリスク評価

現地踏査を行い,建設過程・年代の把握,構築前の土地利用状況,地盤情報 DB による地盤特性の把握を行った。この内,盛土構造物が軟弱地盤上にある 2 区間について他 WG と合同で常時微動特性の把握を行った。また,平成 30 年 6 月 18 日に発生した大阪府北部を震源とする地震直後に,研究対象とし

ていた大阪環状線ならびに東海道線の緊急調査を行った。

そして,道路盛土で用いられているリスク評価方法を参考にした鉄道盛土のマクロ評価法と,盛土の 南海トラフ地震をモデルとしたケーススタディ解析を組み合わせる手法を提案し,大阪環状線の鉄道盛 土の被害予想を行い,予想される被害レベルを可視化する方法を提案した。

(3)盛土地の被害相関分析

西宮市と共同で,兵庫県南部地震時の建物被害状況および盛土区域の被害状況の調査を行った。また, 西宮市が公開している大規模造成地マップ以外の造成地についても旧地形図をもとに抽出を行うとと もに,宅地盛土耐震対策事業について調査を行った。

兵庫県南部地震時の建物被害状況については建築研究所・日本建築学会近畿支部・日本都市計画学会 近畿支部などへ資料収集の協力を仰ぎ,データの提供ならびに使用承諾をいただいた。これらをもとに 西宮市の大規模造成地の建物被害の状況について,造成地以外の建物被害との比較を行った。

3章 地震による揺れやすさと液状化検討

3.1 はじめに

我が国では、古来より多くの自然災害に直面してきた。近代においても、1923 年関東地震による関 東大震災や、2011 年東北地方太平洋沖地震による東日本大震災に代表されるように甚大な災害が発生 している。大規模な自然災害が生じると、災害誘引となったハザードの頻度・レベルについての議論が 盛んになされることが多いが、実際の自然災害はハザードレベルの大小と、ハザードを受ける対象(構 造物・地域)の脆弱性との兼ね合いで決まるものであり、あくまで実務上対処すべきは脆弱性の改善で ある。このため、地域の災害脆弱性を着実に改善するためにも、ハザードレベルや頻度について一喜一 憂せず、継続した息の長い取り組み(対策)を事業者・ユーザー共に作り上げていくことこそが重要で ある。

関西地方では 1995 年兵庫県南部地震による災害を契機に強い地震動への対策が進められてきた。し かし、南海トラフでの発生が予想される海溝型地震や、上町断層・中央構造線等の内陸活断層の地震に 関する知見が深まる中で、継続時間の長い地震動による液状化や地表断層等、多角的な地震対策が求め られつつある。このような多様な対策を対象地域全域で同時に進められることが望ましいが、実際には 優先度に応じて段階的に進めざるを得ない。すなわち、地域のハザードレベルの差異といった、対策優 先度を設定するためのハザード情報が実務上必要である。

ハザードレベルの大小は災害誘引のレベルに大きく依存するが、ハザードレベルの差異は対象地域の 特性、特に地盤によるところが大きい。地域の地盤を詳細に把握し、大地震時にどのように振る舞うの か検討しておくことは、大変重要な事項であると言える。

以上のような背景のもと、本WGでは稠密な地盤情報に基づき地盤の応答特性、液状化評価を空間的 (面的)に評価する方法論について検討を行なっている。具体的には、上町台地を含む大阪平野の250m メッシュ地盤モデルの構築を進めるとともに、大阪府地盤データ等の動的変形特性試験、および液状化 試験データに基づき、土質区分に応じた地盤特性のモデル化を進めた。地域の揺れやすさを評価するた め、複数の観測地震動を入力して地盤応答解析を実施し、系統的な傾向について明らかにした。揺れや すさや液状化評価の高度化にあたっては、詳細な地盤情報が得られているうめきたサイト・住之江サイ ト・弁天町サイトを対象に、等価線形解析・逐次非線形解析による動的応答解析を試みるとともに、各 種設計式による液状化評価手法の比較・検討を行った。また、線状構造物沿いを対象として液状化危険 度を評価した。

3.2 液状化試験と各指針の液状化強度

3.2.1 繰返し三軸試験と繰返し中空ねじり試験における液状化強度の比較

(1)研究目的

液状化判定法は各種指針で異なるものの、地震時における液状化現象の有無は液状化に対する抵抗率(FL)を求めて1.0を上回るかどうかで判定されるものが多い。この液状化に対する抵抗率は動的せん断強度比 R と地震時せん断応力比 L の比、つまり FL=R/L で求められる。 例えば「道路橋示方書・同解説 V耐震設計編(H24.3)日本道路協会」においては、地盤の動的せん断強度比 R は繰返し三軸強度比 RL に地震動特性による補正係数 cw を乗じて求められ、図-3.2.1 に示すように繰返し三軸試験結果をベースに液状化判定法が構築されている。

図-3.2.1 砂質土の換算 N 値と繰返し三軸強度比 R_Lの関係図¹⁾
しかし、地震時に地中の土要素が受ける応力状態を忠実に再現できるのは繰返し三軸試験で はなく、繰返し単純せん断試験と考えられる。なお、繰返し三軸せん断試験による強度と繰返 し単純せん断試験による強度の関係については今までに多くの研究成果が発表されているが、 ほとんどが乱した試料を室内で再構成して作成した供試体を用いた研究であり、図-3.2.2 に 示すように再構成試料を用いた液状化強度は供試体の作成条件によって両者の強度は異なる 傾向を示すことが分かっている。

そこで、本研究では現地において乱れの少ない試料を採取し、それらを用いて繰返し三軸試 験と繰返し中空ねじり試験を実施した。その結果から試験法による液状化強度について比較・ 考察した。

(2) 地盤調査位置と地盤性状

今回は兵庫県尼崎市築地、千葉県浦安市高洲、長野県諏訪市豊田、大阪市港区弁天町,茨城 県稲敷市浮島を対象に地盤調査を実施した。

a) 尼崎市築地

尼崎市築地の地盤調査位置は,図ー3.2.3に示す尼崎市築地3丁目5で、ボーリング調査は 築地公園内で実施した。

尼崎市の地形は伊丹台地(南縁部)、武庫川及び猪名川の沖積平野、海岸平野に区分され、 本調査地はこれらの内、海岸平野の砂州に位置した。築地地区は兵庫県南部地震において液 状化現象により戸建て住宅が大きな被害を受け、住民からの要望を踏まえて地下水位低下工 法を採用した土地区画整理事業が完了している。

図-3.2.3 地盤調査位置図(兵庫県尼崎市築地)

尼崎市築地のボーリング柱状図を図-3.2.4 に示す。GL-0.00~-9.30m 間に締り具合の緩い
 砂・礫質土が確認された。砂質土のN値は 2~13 で礫混り砂及びシルト質砂であった。なお、
 GL-9.30m 以深は粘性土が 10m 以上堆積する軟弱な地盤構成であった。

調査名 尼崎築地地区の地盤調査

					事業	ŧ •	工事名	5													シー	⊦No			_		
ボー	-リン	グ名			2			調査位置				尼崎	築地	地区	築地	公園					北	緯	34	4 2	; ;	38"	,
発	注札	幾関					大日	返市立大学		114	調査	期間	平成	28年	6月) 5 E	1~	28年	6月 1	2 🗆	東	経	135	° 2	5'	5 "	•
調	査 業	者名	基面	と地盤: 電	コンサ 話((-ルタ) 6 - 4	ンツ株	式会社 7000) 主任技師	人保田耕	司 1	現代理	場	林	勝	美	コ鑑い	ア 定 者	浜F	H Ż	3	ボー! 責 f	ノング 王 者	門	2	5 次	郞	
孔		票 高	+(TP), 45m	角	180° 上	90°	方 北 0° 1	也 監 心水平0"	使用	試銷	植機	~	:12	~ !	ウン・	ティ	2 3	いンマ 客下用	 具		平	白動	落于	8		
総	掘	進長	5	0.00m	度	F -		西 / 東 向 180°南 1	勾置。 記 90°	機種	エン	ジン	8	ヤン	-7	NF-	- 8 0 H	7	ポン	プ		力 /	′ — M	G - 1	10		
1.007	. Low-		1.000	10.		~	le le		fL	1			Low 2		ы –1	-	щĄ			EFF (mA a.b	aled also	o rei	a ta	10
標	標	層	深	杠	土	色	相相	記	内水	2502 11	0.cm =* 1		標)	"""	ι Λ	歃	騻			原 1	n in St	11 11 11 11 11 11 11 11 11 11 11 11 11	販武 夕 >m	科书 	定収	室内	甁
12.2			1000		質		対対		位(徐 1	/ 撃 回	「茶回				N	値			徕	およ	。 、 び結	出 深 果	7時 3	採	試験	進
尺	咼	厚	度	状	X		密稠		2	度(0 10	20 数								度	7		\ 度	科	収		月
									定日	j,	2 2	~ 人口												番	方		
(m)	(m)	(m)	(m)	図 0.0.0	分	調	度度	事 秘士組制 62~30mmの網	日日	(m) I	0 20	30 (cm) 0	10	2	20 1	30	10 6	50 60 	(m)	N.		/ (m)	法	<u> </u>	H
Ε,				69695 98685 98685	砂	724		δ 5 50~100mmの人様、玉 る、δ 20~100mm位のコン リート占在する	岩点在す クリ		4 6	6 16															
Ē	-1.40	1.85	1.8		秧	100		レンガナ、プラスティック じる。	2 等ガラ温 - 円和 2 2	1.15	1 3	2	16		1												. teo
2	2.10	0.70	2.5	2.2	シルト 混じり	喻		較は組砂、φ2~20mmの融 若干湿じる。全体に緩い。	温入, 其片	1:97 3:48 i	1 4 15 15	1 32	2 7	/							1000000						
					親親	1.4		2.4m元式5月多く記入する。 約代創成シート時、62~15 じる。	mの確認 300	2.63 (9 9	12 30	- 3)	Þ													
Ē,					U ŋ	阁		上設片一部多く混入する。 全体に緩い。 暗灰色ブロック状に挟む	下層音如此	3.49 1	10 10 13 19	1 30 8 30	3	þ													
	-3.85	1.75	4.30	-44	ゆ真シ	暗		和砂主体となる。 上部シルト(細砂シーム) 口語と遠入 合体に細砂シ	火に(火む) なく漂い	4 18 1 4 89 1	4 16	3 10	_ 3 (1													
	-4.90	1.05	5.3		ルト	灰		る。下居部シルト分少ない	1	9:45	3 2	4 12 A	8	1													-
- (全体にシルト分少ない。ノ る。	内府混じ	9.47 6.13 i	2 2	12 ¥ 7 30	8 6	1			_										-
				12	シル	個〉		●2~00000小檗座しる シルト質料土シーム状に 粘上ブロック状で所々挟	秋む む	6.65 7.03	2 2 3 4	1 5	4	4													1
F,					「質」	暗灰		も2~5mm20小線地しる		7:48 7:58	8 9 9 4	4 18 6 19	11	I													11
					15			順次のシルト決合		8:48	2 2	4 8	13		>												6 V.
Ę	8,85	3.95	9.30		44			8.7mから(少は(歌編(ひとた)	2	9.15 9.15 1	1 1	12 32 1 3 40	2 7	/													6 :
10	9.95	1.10	10.40		н. Г	暗厌		電和電話しる。只数進入。 和砂(雲母片多い)シー。 挟む	ム状に所々	10.15	80 15	1 5	2		_												- The
Ē 11								1 Mar 12 Mar 1997 No. V		10.45	0 1	1 2	11	8													loool.
				_				E部、1947日3600の料性大 貝殻混入		11.50	5 15	15 35	2 1														
12										12.15		$\begin{array}{c c}1&2\\\hline18&43\end{array}$	1.0						1								1
13										12.58	0 1	1 2	2														
14										13.33	0 0	10 50	1														11
						暗 灰、		具片混入(二枚貝) 均質な粘土		14.45	0 1	15 30															- tri
					和	く古い				15.50	5 16	14 35	2														- the
16					£	べと時				16.15 10.46	1 1 18 13	2 31	2 0														
17						青灰		貝殻片多く混人する		17.15	1 1	2	2 0														-
- 18										17.45 18.15	1 1	2 4	1								-						1
-										18,30	, .	15 35	3	r													1
E 1										19.15 1 19.47		8 32	3														
- 20								均質な粘土、粘性大 見殻片の混入少なくなる		20.15 1	1 1	$\begin{array}{ccc} 1 & 3 \\ \hline 7 & 30 \end{array}$	3	1	-						-						
21	-20.80	10.85	21.23		TAR			and a state of the	- 11.2	21.15	1 2	1 4	4														
25	-21.35	0.55	21.80	01,01.9	の語じり粘土	暗灰		補ラバイフ状、シーム県 淡傷ブロック状に挟む、) 報は粗砂、含水大	- 探討 - 「茲混人	21.45 22.15	9 16 14 27	0 30 19 60			-	-											
Ē								上部、礫少ない δ2~30mmの醸混じる δ50mm点在する		22.43 6	50	8 28 60	64														
F 23								23.2m~玉石、大碟多く混 680~120mmの円礫 めつね120。含む	U5	23.15 23.24	9	9	200								-		23.5	50			6/7
- 24					砂磲	灰		1941组织 宫水大		24.30 2	22 17	7 46	48		_								21.1]1r 1 5	8		
23								一部、右下の漏水 所々る80~100mmの大峰	K石成/E	24.60 25.15 2	25 16	30 15 56	- 40					7									
- 04	-95.65	4.30	98.11					する 下部、亜角礫多い		25.45	3 4	30	56														
E 20	-20.00	10	20.10					上部、砂礫 - 溝層狭心 粘性大 - 均質な粘土		28.15 98.45	12	8 30	10	T									26.1	55			6 8
F 27								上部、貝方の混入少ない					- 27	-	S.									τ 1			-

図-3.2.4 ボーリング柱状図(尼崎市築地)

b) 浦安市高洲

浦安市高洲の地盤調査位置は,図-3.2.5 に示す浦安市高洲 8 丁目 20-4 に位置し、ボーリング調査は㈱フジタ浦安クラブハウス作業所内で実施した。

浦安市内はもとの三角州の東京湾に面した端部に位置する元町地域と、東京湾岸道路が走る 旧海岸線付近より沖合側に位置し、大規模埋立事業により埋め立てられ、埋立時期の異なる中 町地域、新町地域に分類される。埋立事業は、現在の中町地域を中心に3地区に区分し昭和39 年秋から開始され、昭和50年11月に第1期の埋立事業が完了した。第2期埋立事業は現在の 新町地域を中心に3地区に区分し、昭和47年12月から第1期埋立地に接続する形で着工し、 昭和55年2月に完了した。埋立工事には浚渫土砂(海底から採取した砂を主体とする土砂) を堤防内に充填・埋め立てる方法で施工された。東日本大震災で液状化被害が特に大きかった 箇所は浚渫土で埋立された中町地域及び新町地域に集中していた。なお、本調査地は新町地域 に位置する。

図-3.2.5 地盤調査位置図(千葉県浦安市高洲)

浦安市高洲のボーリング柱状図を図-3.2.6 に示す。GL-5.95~-15.60m 間に締り具合の緩い 砂質土が確認された。砂質土の N 値は 4~16 で比較的粒径が均一な砂主体であった。なお、 GL-15.80m 以深は粘土が 10m 以上堆積する軟弱な地盤構成であった。

調査名 浦安市高洲8丁日地盤調査 ポーリングNo ポーリングNo

事業・丁事名

				-		- 7 7			19610	-			_									-			3	/- 1	No	r					
ボー	- 1	ン	グ名			Ν	0.	1		調査位置			×	F葉	県浦	安	市 凄	6 洲 8	Т	目20) - 4				7	Ł	緯	3	5 °	37	, ;	53	
発	注	機	関										5	■査期	間	平成	t 29	年 7	月	17日	\sim	29年	7月	21日	Ŗ	E	経	13	9 °	54		55	"
調	査	Ř i	皆名	基础	地盤。	コンサ	- 11 5	マン	ツ株	式会社 主任技師 久保田	耕	司	野山	<u>л</u>	場	柞	ŧ	勝美			ア	大唐	5 BZ	彦	7	ドーリ	ンク		門	万	次	朗	
71	п	擂	三		TP	角	180	+80	1	7000) 方 北,0° 地		使	17	て理ず継	人機		ベル		לו -	難及	:1自) 、ノ、	,	ハンマ		F	1:	t 19	 4 白	ருக அ	T T			
16		177		13	. 67m	2	上	7 9	0°	270° 90° 盤 鉛水平	40°	用機	a ³	a, set	1992	-	192		- <u>/</u>		1 -	22	落下月	具					390 ft	t 1.	0		_
総	孤	進	長	:48	5.45m	度	0	-		向 180°南 配 90°		種	1	- 22	~		-P	24	-	NF -	8 O H		ホン)			7	/ -	• M G	- 1	0		
+100	70	7	EZ.	175	t)-	ь	4	łн	£4	÷3	71					+œ	洲作	m.	T	48	影合			Ē	1.7		+ =+	E?	* 48	1. 182	τ.	4	100
标	衍		喧	休	Ύτ.	T.	巴	作日	作目	pC.	内水]	10	·····	n 11	137	(pa	д	\wedge	Brt	副火			2014	12	. ⊫ N∵	睮	· 秋	T Ma	- 1K	- FX	単内	加
						質		対	対		位	. (K	打	惑回う	翠回				i	N	値			深	1	およ	び痛	中果	泺	武	採	試験	進
尺	高	i	厚	度	状	175		ete	1.COTT		/	,库	0	10 2	0数									庶	1			ų,	庶	料	取		
						A		Ŧ	他间		測定		2	2	貫入									-					1	番	方		24
(m)	(m		(m)	(m)	X	分	調	度	度	事	月日	(m)	10	0 20 3	0 (cn) D a		10	20		a.	20	50	(m)				7	(m)	导	法	-	П
-	3	.37	0.30	0,30	<u>18197</u>	彩铁	時褐			上部は直視、砂は細砂 610~30mmのシキ正人	2/1	0.15	5 1 5 3	1	1 13	4	1	10	20		0	10	30	10									-
- 1		97	1.10	1.40		シルト 質砂	暗祸			税は細砂 税償シルトプロック状で所々挟む 目れた日本ノルドス	1.0	3 8.66	12	8	30	8		Σ						-	2			02.97922					-
-	-	.21	1.10	1.40			12			全体に軟らかい。累捨大 単応色ブロック出か技い。		2.9	1	4	5 65	1	1																-
- 2					77	質料十	火			木片、木削混ざる 深さ1.80m~15cmのシルト質砂を決		2.40	60				l .																
Ë 3	0	.77	1.50 0.40	2.90		細砂	暗灰	1		○ 全体に均一、含水大 会体に応ろし、		2.99		ンマード	12:28	0.0	-		+					-	-								-
- 4					Ţ.	Fà				微細砂多く混ざる		3.60 3.60	17	4	8 65	1																	-
-					<u> </u>	営業	1ê			全体に戦らかい 剤酸薄層を挟む シルト質料土との互属		4.45	5 IJ	6	0 65	-																	
5					74	N	灰			微線時多く混じる 下層部、シルト質秒との互屈		4.99	- 1	1	8 28 L 3	- 1	1																
Ē 6	-2	.28	2.66	0.96				-				5.66	- 112 - 3p	3	7 90	-1	-								-					-			Ξį.
Ę.						粗	B ^A			上部610~30mmのレキ点在する 貝ガラ多く混入する。含水大		8.48	3	1 1	1 8	9	1	7															4
- 7						10	灰			42日ンルトをシーム状に狭い シルト質砂層狭い 7,45~7,80回砂質シルトを挟む		- <u>6.95</u> 7:45	1 15	5 I	1 .8	5	L																
- 8	4	.13	1.85	7,80	••••				-	今休に約一 日ガラ片迎入		7:66	1	5 (39	15		7	_			_		-									4
										allowed a second second		8-12 8-14	5	G (i 30 1 31	15		1															i
- 9										褐色シーム状連続に挟む 貝ガラ片若干混人		8:47	1 13	2 3		5	r	/															1
10						和	呼灰			砂質シルト薄層で連続に挟む		8.66	-	12	3 33	4	¢																
Ē.,,										砂質シルト薄層で連続に挟む		18:4:]8:9:	1 12 5 14	2 8	30	5)																
11										腐枯土をシーム状に挟む 中勢(淡褐) シーム状で所々挟む		11:4	i i	14	33	4	4																
12	-8	1.8	1.00	11.80	19	砂質シ	略			位置シルトとの丸層状 全体に微細砂混じる 全体に軟らかい		11.6 12.0	5 12	12 1	6 40	3	1		-			-		-	-								
E 13	-8	.98	0.85	12.65	<u> </u>	311	灰		-	和時、常層技む 均一で見存を若下混入 一切なりた。		12.4	5 12	3	1 30	9	1	7															7.1
1	9	.93	0.95	13.60		8	裕			1480mののシントムの15元で 砂は全体に均一。所々に中砂混じる シルト質砂。シーム状態		13:4	5 12	8	30	8	/	ł															1
- 14	-10	02	1.00	14.60	22	砂質シ ルト	暗灰			繊維砂合体に混じる 下層部は細砂との互層状		14.1	7 12 7 12	2	20/22	1 fi	1							-									
15	10		1.00	14.00	14	シルト	1º			記は均一た創催 漆器、シーム出い技た		14:90	ā ų	4	; ¥	13		7															
-	n	.93	1.00	15,60		ંબ જ	<u>v</u>	- 1		18-10-10-11年に形像シルトを挟む	F	18:4	5 8	Ŧ	4	- 10	/	ð	- -					+-	-	-				- 1		-	- 1
- 16										上部、複雑物を多く遅しる 淡火褐シーム状に挟む		16.15	5 /	ンマード	102 30	0	(-								1								
- 17						2	1.22			貝ガフ方が石上泥人 全体に軟らかい		17.1	5		0																		
10						ルト	K			シルト質砂(微砂)、薄層挟む		17.4	1	24.71	10, 20	0.4																	
18										目皆若下還作名		18.1	5 ハ 5	ンマード	182 30	0 1	1																
- 19	-15	.58	3.65	19.25						シルト質砂層狭む		19.13	5	28-6	0	0.1			-					-	2								-
20												19.4	5		0																		1
										沿性大		20.1	5	2-7−E	107. 20	0.5	5																
- 21										貝片混入		31.13	<u>5</u> ハ	シマード	0	0.5			-			-	-										-
- 22										K1053381 L.91 00mg		21.4	5 5		0																		
										1月月の混じり多くなる		22.4	5	2-2-F	1 (7. 30	0.5	8																
- 23						2.0%	16 後止					23.13	5 	Zw-E	0 182 30	0 (1																
E 24						粘止	K Z					23.4 24.1	5 5		0				_			-		-									1
-							禄灭					24.4	5	277-6	1次 30	01	2																
25										日告続代表		25.1	5	200	0 1 22 30	0 <	J																
26										54/108UG		26,11	5		0	0.1																	
E 97												26,4	5		0 - 01																		1.1.1.
1 41		ŝ,			1	1				And the international states of the states o	8				1 2	at 1			T			8	16	1	4.1								0.1

図-3.2.6 ボーリング柱状図(浦安市高洲)

c) 諏訪市豊田

諏訪市豊田の地盤調査位置は,**図ー3.2.7**に示す諏訪市豊田字湖畔1866-1に位置し、ボーリング調査は豊田終末処理場前公園内で実施した。

本調査地は諏訪盆地に位置し、諏訪盆地は諏訪湖北側の岡谷市や下諏訪町から南東部の茅 野市に至る長さ約15km、幅約5kmで北西-南東方向に延びる盆地である。南西側を湖南山 地、北東側を霧ヶ峰火山地に挟まれ、山地斜面と盆地底との間には活断層による明瞭な地形 境界をなす構造性の盆地となっている。諏訪湖の南東側は諏訪湖湖岸から中央道諏訪インタ ー付近までの4.0kmの区間の比高が2mほどで、極めて平坦な低地が広がっている。この低地は 湖岸平野、氾濫平野、後背低地、自然堤防で構成されている。盆地中央部には蛇行しながら 北流する宮川沿いに比高0.5m~1.0mほどの自然堤防が形成されている。低地の大部分は泥炭 質な堆積物となっており、諏訪湖南東側の低地では近年も地盤沈下が継続している。

図-3.2.7 地盤調査位置図(長野県諏訪市豊田)

諏訪市豊田のボーリング柱状図を図-3.2.8 に示す。GL-0.00~-12.55m 間に締り具合の緩い 砂質土が確認された。砂質土の N 値は 3~15 で所々にシルトを薄く挟むものの、比較的粒径が 均一な砂主体であった。なお、GL-12.55m 以深は粘土が 10m 程度堆積する軟弱な地盤構成であ った。

調査名 2017年諏訪市豊田・湖南における地盤調査

					調	耆	È :	名 2017年諏訪市	豊田		湖南におい	ける	地盤調	周査				ボー	リン	グNo					Π
					事業		工事	名										1		- 6 No					a a
ボ	- リン	/ グ名			N	ο.	1	調査位置 諏 訓	ら市き	豊田	日字湖畔18	66	1 [豊田が	終末効	卫理場	前公	罰」	メ	— Fillo 詳	¥ 3	6 °	1'5	8 "	
発	注	機関					大	阪市立大学			調査期間	平成	29年	8月	18 H	~ 29	年 8月	1 23	東	彩	Ĕ I	38°	5'	13"	×:
調	査 業	者名	基何	链地 盤 電	コンリ 2話(0	1 3	インツ杉 1861-	^{≹式会社} 主任技師 久保田	目移	# =	現場	林	勝	美	コ織定	アオ	: 島	昭彦	术	ーリンク	Ť	[11]	万次	朗	
孔		標高			角	180° : -	90%	方 北 0° 地 270° / 90° 盤 のホ	平0°	使用	試錐機	10	ベル	マウ	ンテ	イン	ハ: 落	レマート用具	~	2	半 년	動落	T		
総	掘;	進長	5	5, 45m	度	下 0°	2	西 一 一 一 元 5 元 5 元 5 5 5 5 5 5 5 5 5 5 5 5 5	/	機種	エンジン		ヤン	~~~	N F - 8	0 H	ポ	ンプ		力	1-	- M G -	10		
Lar	Land		\umage:	13.	T			20	<i>i</i> l			Jan 7	Set ID			4		125	· //.		5 664	- b del	+52 TT-	_	km.
得	標	層	祆	11:	Ŧ.	E	伯伯	πd	内水	199	- 10cmごとの 打	悰	平 貝	<u></u> Л	武 (1)	Ψ.		厉	. 1V. E क	直野し	、歌名	武科	保収	単内は	理
	宣	E	Æ	#	質		対 対		位 (m)	L'N	<u>「</u> 打整回数 回			ļ.	N ()	値		14	*	よび緒	未果	1/15 1	日前	験	進
	141	.1.	1.2		X		密稠		測	度	0 10 20 🎢							ß	ŧ			度	香方		月
(m	(m)	(m)	(m)	図	分	調	度度	事	正 月 日	(m)	10 20 30 (加)					127	201		1)			(m) -	号 法	_	н
8		0.40	0.1	69595	砂礫	暗档		移は料砂。♦2~30mmのレキ混る レンナ11混る ロンナ11	н	0.13 0.4		8	10 1	20	30	40	150	150							
	1	1.20	1.B	2	シルト 混り砂	「「「「「「「「「「」」」」		(4)よ牛砂 シルト質粘土挟む か2~40mmのレキ混入。φ100~400m -のアンジンス	8/19 1.41	8.9		5	1												
	2	1.000			砂質シ	Fill		下層部で砂質シルトを多く挟む 繊維砂混る へんにたらかい		1,8	ြေဆုံ သူ ြေရ အိ	- ! {													-
	3	0.95	2.5	3	<u>ルト</u> 細	灰暗	-	- 高価物語る - 含水人 和砂を速層で画々控す。		2.63		5													land.
-		1.15	3.7		45	灰		約レキ右下記る 砂質シルト・組砂を清層で挟む をという。		3.43	1 3 13 7 2 22 1 3 12 3 38	6 8	g												
Ð	-	0.95	1.6		砂	厌		ご水人 ゆ2~300小レキが全体に記る 全体におーで全水上		4.4) 4.6)	1 12 2 3 30 1 12 8 30	10	>												1
E	5	0.60	5.2 5.5		利砂シルト 	暗灰		4.90m门带挟起。 构代制砂。震植物混入		1,4		3	1												-
	6	0.60	6.1		砂質シルト	暗褐灰		税は細砂(均一) 繊維をシーム状に採加 細胞を薄層で接加		北京		38	>				-		8						l
E	7							62~3mmの)小レキ提る 税質シルトを決定 原植士、役官シルトを満起・シーム		6.91 7.11 7.41		3 6	5				-	-	-			2			1
	8				中砂	·暗 厌		状で決む 7.00m附近より中砂上体で五層状 相砂、腐極上、砂質シルトを薄層で		7.9		7	2												1
-	9	2.50	8.6	 444	\			連続に挟む 8.30~10.0cm砂質シルトを挟む 8.55~10.0cm対応挟む		9:4 9:5		1	l												-
	0	0.20	9.4		心当シ ルト 新砂	暗褐 灰 晴灰		細砂をシーム状で挟む 高橋土地店で採む シルト質砂をシーム状で挟む		8:48		7	2												-
Ē	0	0.00	10.1		の質シールト	暗褐灰		細砂薄層で決む 幕懐上シーム状で挟む ψ2~3mmの小レキが混る		18:4		11	1												8
- 1	1				144	RA.		含水大 所々、砂質シルトをシーム状・薄層 で快む		10:5 11:4	⁵ 1 5 5 ¹⁹ ³ 3 5 4 ¹²	15 -		Ť			-	-				-3			- 19
- 1	2	2.45	12.5		21	灰		10.50m~中校が多くなる も2~3nmの小レキが混る シルト哲校がシーム状で連続に決む 的時上に入れて		11.9 12:1	8 3 3 1 30 8 1 13 8 31	12 7	1	-											_
1	3			4	ļ			線電工店を供加 塩植物(新鮮)混る も2~3mmの小レキ混る 総加加による		19.6 13.1		2 0													
Ē	4	1.25	13.8	0 	が見シ	旧档		幕横上層、湾層で連続に挟む 裏植物多く混る		13.5	10 .36 5 1 1 2		1												
Ē,	5					ns.		微砂混る 粘性大 黒火色シーム状に挟む		14.4	17 13 30	2 4													and and
E .						褐之		規植物が多く混る		15.5	22 13 35	2 1													- the
1	6				2.	個と		黒天色シーム状、プロック状で挟む		18.4	5 1 1 1 3 30 3	3	}												
= 1	7			====	л. -	でおく		2110-L		17.1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	6						30						-
1	8			====		馬灰		箱住大 原植物が混入する		18,1	<u>5</u> 1 1 1 3 18 7 35	3	0												
- 1	9			====		~ 暗褐				18.5 19.1							_		-						-
E 2	0	6.45	20.2			1.545		19.00m附近、黒灰色を挟む 粘性中位		19,4	5 2 4 7 13	-	/						-						1.10
EF .	1	0.45	20.7	0	中形 7 ^{21.}	暗灰				80.4	30	13	\geq	Σ											
	1				炒 省 シ	暗		激制砂が全体に混る 粘性中位		81.1 21.4	5 12 8 30	6	1												
2	2	1.90	22.6	1	л Б	庆		5~10cm程度で砂層を所々で挟む 腐粒土居(黄褐)を決む		22.1	5 2 2 4 8 9 11 30	8	1												
2	3				和他	暗灰		移住均 所々に砂質シルト(暗褐)が薄層で挟 全		23.1	5 6 8 19	19		\geq											8
- 2	4	1.20	23.8		2 9	腔湯		総補物(新鮮)混る 織砂全体に混る 音場物に3		23,4		8					_	-							
- 2	5				ピレル	灰~*		econstantic、 24.35m~編動法り多くなる 24.90m~編動(淡灰・褐灰)で25.10m まで材す。		24.4 26.1	5 5 3 4 4 11	-	_/					12							- L - L -
F o	6	1.90	25.7	- 222	þ.	朱 福 一		音楽組の審査上シーム状で挟む 一个体に和範十体の互眉状		23.4	5 11 31 7 14 16 37	11	7	\rightarrow	/										1
	_	1.05	26.7	11111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	81 란)	r 一 灰		粗砂(小レギ混り)。砂質シルト 清層で所々狭心 薄価物温人		26,1	5 30	37				\geq									
E 2	7			122	206	L.	L.	上即程作L人		1	3 4 5 12			1	- 01										1 -

図-3.2.8 ボーリング柱状図(諏訪市豊田)

d) 大阪市港区弁天町

大阪市港区弁天町の地盤調査位置は, 図ー3.2.9 に示す大阪府大阪市港区波除地区でボーリング調査を実施した。

本調査地は大阪平野の西部に位置し、大阪平野は大阪湾に面し、北側を北摂山地や千里丘陵、 東側を生駒山地・枚方丘陵、南側を泉北丘陵で囲まれた低平地である。大阪平野西部は沖積平 野が分布し、上位より砂からなる沖積上部層、粘土からなる沖積中部粘土層、砂または粘土か らなる沖積下部層が厚く堆積し、その下位に上部洪積層である天満層や Mal2 層が堆積してい る。

図-3.2.9 地盤調査位置図(大阪市港区弁天町)

大阪市港区弁天町のボーリング柱状図を図-3.2.9 に示す。GL-5.85~-11.40m間に締り具合の緩い砂質土が確認された。砂質土のN値は3~14 で全体的に細粒分を多く混入する砂主体であった。なお、GL-11.40m以深は粘土が20m以上堆積する軟弱な地盤構成であった。

					中 4	¥ .	т	古人	z												- 10-	1. v		/10						
,	. 11	<i>ب</i> بر ا			 ₹	< · .	1	# 7	□ 調素店要 ↓	こにに、そう	. Art u	全								-0			シ・ ーレ	— ⊢No .≉	書の	4.°	10	n (4	۶ "	
*	- ·) 注	が見	3		IN	0.	L			(版印色区	. (X 1		本地	89	भू की	20年	= 6 H	1 1 日	~	20年	. H 1	128	北	तः इ	a∓ ⊃ a⊼ 1 ≤	4 15 0	20		. o 4 1	"
元 ::::::::::::::::::::::::::::::::::::	江本	* 去 么	。 ————————————————————————————————————	ἑ地盤⇒:	ンサルう	シッ	大大	会社	関两支社 主任 甘 師	I. E. RV	<i>14</i>	明	1 <u>1</u> . 797	場	九促	ло <u>ч</u>	- 0月	, +u _	P	い中の	U C C C	н <u>и</u> 144	ホボ	-リン:	グー	, J	<u>л</u>	_	÷.	
zi		:111 语 道		TP	電話 ((│ 角) 6 -4 180°	186	1	7000) 生日及副 方 北口 地	八面山	使	1	t理 # ##	人	入下	жо	KEN	鑑定	省	ر _{من} کر ۱	マンマ	/>>	責	任者	¥ 白	動成	<u>त</u> च उ		1213	_
10	山桐	准具	a _ L F	1.00m		En Es) 9)°	270 90 盤	鉛 水平0° 直	用機	Т	·	1052	4	×	-Z	NED	-13		客下用 ピンノ	具 プ		κO		₩.	₽ 1 G -	1.0		
THC:	ТКБ		с .	0.000	度	0° ×	0		向 180° 南 配	90° 0°	種	1-	- / /	-				NPD	-10		. /	-		K O	K E P	м	0 -	1.0	_	_
標	標	層	深	柱	±	色	相	枊	음리	孔内					標	単 貫	【入	斌.	験			原	位	置言	式 験	武米	补採	取	主義	掘
					督		対	対		水位	深	10:	omごとり	一行呼				v	标			深	試	: 験 E 7 F	名	深	訞	採	内試験	進
尺	高	厚	度	状						(m) Inte	打 0	学回素	女 也 数				N	118.			nte:	/	նե Մ	が日 :不: \	101	料	取	課 ()	~
					X		密	稠		測定	度	2	2 2	員人								没				送	齿	方		月
(m)	(m)	(m)	(m)	図	分	調	度	度	事	月 日	(m)	10	20 3		i) 0	10	2	20 3	0	10 2	0 6	(m)	1		7	(m)	叧	法)	Η
-	0	10 0.9) 09	00000 00000 00000	心康	暗視	線 い		税は相説。62~30mmの税法1 レンガ片混じる	U B	0.15	1	22	30	8	1														
1	0.1	25 0.3	5 1.2	5	シルト	临祸	非常後		程によ組む 課題(2~10mm) 快払。「音茶場」	6/4 作法的 16	1.15	1		1																- International Contraction of the second se
2	-0.5	90 0.6	5 1.9	(<u>22</u>	砂質シ ルト	喻灰	5	軟らかい	微細砂をシーム状に連続して 1-90 編60株52	cikte j	1.65	15	35 35	50	2								-							
- 3				====				較	不体に軟らかい 木片、大倉所々に混じる 2.30m(たけ) 弾層(スラク)か5	5undati -	2,50 3,00 3,00	~	ンマー日	2: 50	0.7															100
					ルト	暗 灰		らかい	2.00011021000200000000000	with market	3.45 3:65	6	2 8 1 5 1	这 49	1															1.1
	-3.1	75 2.8	5 4.7	5					3.90~1.10m、シルト語しりに セ	化外留代	4,15	- 45	2 2	1	1															
10	-4.	30 0.5	5 5.3	62326	砂碟	暗禍 灰	続い	戦ら	<2~30mmの碟(スラグ)。 (スラグ)。 (本) (本	片混じ	4,99 3,15 5,50	1/12	23 2	2	2	<i>?</i> :						-	-							1.1
6	-4.3	85 0.5	5 5.8	s [PT(X)	扑	かい	 下層部、細砂多く混じる 砂は細砂。 シルトをプロックボ、薄層で 	CEF-41C	8.88	9	9 4	30	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$	F														6/1
= 7					2 - -		(n 12 4		秋臣	and the second	8:55	T 1	1 Y	30	3 0	<u> </u>														
					2		10		7.50mより、中砂を所々に挟ま 日始日が1000	te.	1:47	8	13/12	228 22	6	1º														1.0
				1	下湯	略作	織い		シルト薄層で所々に挟む 8.40~8.60m間、中砂挟む。2	含水大	<u>-</u>	12	8 2	30	14		>													
9					5	JK.	中。		貝殻庁若干混じる		8:98 8:48	. 1	3 4	38	6	5							-							
- 10				×	. 8		50		 シルトをブロック状、薄層で 挟む 一部、雲母片多く混じる 	で所々に	8.66	1	1 4	36	8	1					-									- T
11				1			イ級		シルトシーム状で連続して扮	₩ł1	18.68	2	9 4	30	8	1														1
	-10.	10 5.5	5 11.4		40			¥.	が時にショルトン・休		11:56	+	- 5	3,5	4	ſ														and an
- 12					11 シル	· 「」 「」		らか	ジルト語じり砂層を薄層でき わ 一切、通知時後く2015ス	所々に夹	12.00	15	9 8	32	3															6 5
13	-12.	00 1.6	3 13.0	d===;;;	F			10	nix on other sectors		13.15	1	1 1	3	3															
- 14					シル	11000		歌	全体に軟らかい		13:48	1	1 1	3																
12				14	下资料	· 唔 灰		らかい	粘性大 激励湿じる 貝殻片若干湿じる		14.50	15	1 1	35	3 0															1.1
-					Ŀ						15.48	15	8	33	3 0															1.1
16	-133	30 - 330) 16.0						全体に均衡 粘性大		16.15	1	0.1	3	3 0															
17									月設行港じる		17,15	1	1 1	3	3															
- 18											17.46	1	1 1	3																
10											18,49	14	11 9	34	3															
						Rife					19.15	12	8	30	3															
20				-	*	緑 灰,		較らり	細粒状の貝殻片まばらに混じ	じる	20.15	1	1 1	3 30	3 0															June 1
21				-	+	(脳		D* 5 V			21.15	1	1 1	3	3 4															
22]	~~					21.45	1	1 2	1		8						-								- International Contraction
E 99											22.50		1	5 35	3 0															1.1
- 23											23.50			33	3 <	25														
24											24.15	1	1 1	3 30	3	ki Ki														
- 25	-24.8	9.0) 25.0		シルト	喑		軟ら	繊細砂温じる		25.15	1		8	3 4	8							-							6
20	-24.4	80 0.8	25.8		資料上	灰		2.11	見殻片若干混じる 全体に細砂多く混じる		25.48 26.15	12	1 2	1	11															
E or	-25.	90 1.11) 26.9	4	- 19日シ ルト	m 灰		軟らかい	(雲母)!多く混じる φ40mmのシルト球混じる		25,49	12	8 1	34	1															
27				History -	+			5 1	「微砂法じる	1		2,	1, 2	5		1		ł.					1			1	6 I.			L 1

図-3.2.9 ボーリング柱状図(大阪市港区弁天町)

e)茨城県稲敷市浮島

茨城県稲敷市浮島の地盤調査位置は, 図-3.2.10 に示す茨城県稲敷市浮島 6128 付近に位置 し、ボーリング調査は(株)地盤試験所所有の借地内で実施した。

本調査地は霞ヶ浦の南東部に位置し,名前の通りかつては霞ヶ浦に浮かぶ島であった。周辺 は蓮根畑が拡がる後背湿地・干拓地であるが,調査地点は砂州または浜堤でできた砂質土主体 の地盤で,比較的緩い状態で堆積している。東日本大震災ではこの地区の近傍では液状化によ る被害が発生している。

稲敷市浮島のボーリング柱状図を図-3.2.11 に示す。全体に砂質土地盤であった。GL-3.5m 以浅の N 値は低い。これは、調査地点の敷地が元々雑木林だった所を整地したため、表層数 m は埋戻し土であったようである。地下水位は GL-2.11m であった。GL-3.5~-6.5m の N 値は 14 ~31 と高い。この部分は礫まじりの砂であった。GL-6.5~-15.0m の N 値は 6~15 で増減して いるが、-15.0m 以深は細粒分が多くなり、深度方向に N 値は減少した。

調 査 名 稻敷市浮島地盤調査

事業・工事名

 ボーリングNo.						
シート	No					

ボーク・グダム 発表 かくいし 建築 なん 医素 なん 日本 日本 <th></th> <th></th> <th></th> <th>-</th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>1 1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th>· ·</th> <th>140.</th> <th></th> <th></th> <th></th> <th></th>				-		_				1 1										_			· ·	140.				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ボー	リン	・グ名			稲 敷	Ν	ο.	1	調査位置				茨城県	稲!	敗 市 浮	島 6 1	128 伝	近				北	緯				
副金集合 1000000000000000000000000000000000000	発	注相	幾 関										i	調査期間	平	成 30年	F 9月	16日	\sim a	30年 9	月 1	9日	東	経				
П. П. Ф. П.	調ィ	査 業	者名	基礎	地盤⊐	ンサルタ	127	株式	会社	関西支社 2000)主任技師 中井	健	博	Ę	見場	۰ ۱	中井 6	患 博		, ア , エ	大島	昭;	彦	ボーリ	ング	門	万~	欠朗	
Image: Control in the second	71		查 查	+	TP	角	180°	186	- 1	70000月 地 地		使	1 ₹	「埋人	۱ ۱ ۱	邦 1 下	工機	<u>」 550</u> 万 101 -	<u>百</u> C 4 8 I 3	(S1 /	シマ	_	頁 11	: 百 	動変	٤. ٣		
m m <th>11</th> <th> 1 </th> <th> iii</th> <th>+</th> <th>+3.2m</th> <th>1</th> <th></th> <th>\mathcal{F}^{9}</th> <th>0°</th> <th>四 90° 盤 鉛 オ</th> <th>^{く平0°} ア</th> <th> 用機</th> <th>₿ 幾 .</th> <th></th> <th></th> <th></th> <th></th> <th>тр. 1 с</th> <th>- 10 D1</th> <th>···· 落 。 」</th> <th><u>§下用</u> 。</th> <th><u>具</u> ー</th> <th># +</th> <th>, 13 7 HA T -</th> <th>T 148</th> <th>. г р.с</th> <th>_ 4</th> <th>T</th>	11	1 	iii	+	+3.2m	1		\mathcal{F}^{9}	0°	四 90° 盤 鉛 オ	^{く平0°} ア	用機	₿ 幾 .					тр. 1 с	- 10 D1	···· 落 。 」	<u>§下用</u> 。	<u>具</u> ー	# +	, 13 7 HA T -	T 148	. г р.с	_ 4	T
# #	称ひ	加出 フ	些 女	6	94. ƏUII	度	0°			向 180° 南 配 90°		種	ŧ.	エノシノ		7 / 7		1 F I 2	S U V = .	с 1		/	東ナ	рив Г.	上 1%	ЪG	- 4	L
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	橝	尰	网	涩	柱	+	臼	相	相	記	I I	L			섿	[)進 1	町 入	試	驗			原	位置	試 驗	試実	11探目	ŷ ∉	3 掘
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	175	1275	/8	环	11	1		114	11	пL	内 オ	5] < 322	25 10	Demごとの	い 打	; + ;		prv.	-dec			2015 1015	武	験 名	325	1 14 4		三 14日 月 月
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		- 1-	_			質		対	対		(m	λ N	木 打	「擎回数	撃回			N	値			坏	およ	び結果	íæ.	101 T	к н В	進
$ \begin{bmatrix} a \\ (a) \\ (a) \\ (b) \\ (a) \\ (b) \\ (a) \\ (b) \\ (a) \\ (b) \\ (c) \\ (c)$	尺 	咼	厚	度	状	X		瘀	稛		/ 	」度	ξ (0 10 20	数 /			Ĩ				度	(度	朴 月	×[^	` 月
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											定	2	1	2 2 2	頁入目											番 ブ	7	
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	(m)	(m)	(m)	(\mathbf{m})	図	分	調	度	度	事		/ (m	n) 1	0 20 30 (重 cjn)	0 1	0 2	20 3	30 <u>4</u>	0 50	60	(m)	()	(m)	号	Ξ×	- 日
$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$]	_			暗褐	非常		砂は中砂。草根多い 黄褐色を縞状に挟む	$ ^{-}$	0.1	46 U	8 13	<u>s</u>	9				Ţ				_				
$ \begin{bmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	÷ 1				· · · ·	砂	~暗	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		↓2~10mmの礫点在する 1.50m以深、↓10~20mmの礫点在す		1.3	97 L		% 38	1 ×									1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2	1.35	1.85	1.8	<u></u>	シルト語	त्त्रभूत	認い	+	る 動け細砂 末片混じろ	9/1 2.1 	17 1.8	98 1			Í									-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.70	0.65	2.5	<u>م</u>	じり砂	暗	非	-	砂は全体に中砂主体で互層状 含水大	$\left \right ^{-}$	2.4	招互	2 8 12	32 5	2												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 3 						福 ~	常に緩		ロハへ 所々小礫混じり層狭む 3.50~3.70m間 2時間にり屋(1.9.1		3:4	48 9		<u>ال</u>	Ø						1						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E 4				····		暗灰	5~200		0.00~3.100mmの建設し9747(#2~1 0mmの建)。粗砂挟む		3.6	98 (15	5 7		3	Ì								-			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	in a					砂	() () () () () () () () () () () () () (彼い ?		4.70m以深、シルト混じり層薄層挟		4.9	s s			4												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							黄褐	中ぐら		し、 5,10~5.20m間、礫混じり層挟む(φ 2~10mmの礫)		5.4	招 65	11 12	30 1	8	ø	\vdash										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6						~ 暗	200~		6.00m付近、粗砂挟起		8:3	90 e		78 30 1	8	0		-						-			
8 9	E 7	-3.90	4.60	7.1	¢;		灰	緩い		6.50m以深、シルト分混じる。 貝殻片 混じる コカンチャット		8:5	<u>98</u>	5 5	<u>}</u>	< <	_								-			
$ \begin{bmatrix} 8 \\ 9 \\ 9 \\ - 0 \\ -$	÷				11					12/14年107 含水大 上部、貝殻片若干混じる		1:4 7:6	48 . 96 .	4 5	38 1 30 1	3	ļ											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	E 8									8.00m付近、貝殻片混じる 8.50m円近、シルト分発くたる		8 :4	48 2	3 4	10/30/1	3	þ											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E 9					2	暗灰	中 ぐ		0. 5000044 777 F 71 97 4 5		8.6	98 -		50 51 51 51		6					-			-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	÷ 10				· · ,	ド	~ 暗	5 5 2		9.50m付近、貝殻片混じる		9.4 8.6	10 1 98 1		10 30 1	2	Į.											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	E I					前砂	緑灰	、緩い				18:	18	12 4	<u>۽</u>													17
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 11				· · ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;					11.00m以深、シルト分少なくなる。 一部、雪母片多く混じる		102 11:	15				,								-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12				1.					111 2(10) 5 (200 0		11:	源 1	2 8 13														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-9.20	5.30	12.4	a <u></u> .					砂は細砂 含水大		12:	.据 1. 		30 1 30 1 30 1	4	Y a											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 13 E									曇舟片混じる 13.00m付近、砂質シルト薄層挟む		13:-	48		30 1	5	þ								-			
$ \frac{16}{22} - \frac{10}{10} - \frac{9}{17} - \frac{10}{22} $ $ \frac{16}{22} - \frac{10}{10} - \frac{9}{17} - \frac{10}{22} $ $ \frac{16}{22} - \frac{10}{10} - \frac{9}{17} - \frac{10}{22} $ $ \frac{16}{22} - \frac{10}{10} - \frac{9}{17} - \frac{10}{22} $ $ \frac{16}{22} - \frac{10}{10} - \frac{9}{17} - \frac{10}{22} $ $ \frac{16}{22} - \frac{10}{10} - \frac{9}{17} - \frac{10}{22} $ $ \frac{16}{2} - \frac{10}{10} - \frac{10}{17} - \frac{10}{10} $ $ \frac{16}{2} - \frac{10}{10} - \frac{10}{17} - \frac{10}{10} $ $ \frac{16}{2} - \frac{10}{10} - \frac{10}{17} - \frac{10}{10} $ $ \frac{16}{2} - \frac{10}{10} - \frac{10}{17} - \frac{10}{10} $ $ \frac{16}{2} - \frac{10}{10} - \frac{10}{10} - \frac{10}{10} $ $ \frac{10}{10} - \frac{10}{10} $	14				[13.9	.16 .15	1 8 6	30 1 20 1	5	+								-			1
$ \frac{10}{22} - 16.00 - 9.77 - 22.10 $ $ -\frac{10}{22} - 16.00 - 9.77 - 22$	÷ E 15				1							14.1			30 30	3	Ĺ											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 10				[····;					一部、シルト分多い		18:	48		<u>ş</u>													
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	÷ 16				×.	シ		φ.		16.00~17.00m間、貝殻片若干混じ る		18:	30 1 18 9		<u>*</u>										1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- 17					ド	暗	5		全体に緩い		18:1	頭		<u>2</u> 2	$ \phi$									-			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	- -				/ ···	06 じ り	灰	2 489				1f: 17:1	が 8		32 5	Ĵ												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 18					10 10		5				18:	37 9		22 12	•						1						1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	19									19.00m以深、貝殻片若干泥じる		18.1 18	:98 18			0									-			
	E 20											报			30													
	ii l				ľ							20. 20.	.15	12 9	31	🛉												
	- 21 E					1						21.	.15 1 1	$\begin{array}{c c} 1 & 2 \\ 3 & 7 & 13 \end{array}$	4 33	6									-			
	E 22	-18.90	9,70	22.1	ſ.					no		21. 22.	.48 .15 1	111	3	\parallel									.			9
	÷					1				1991a冊199。全体に均一 含水大 貝殻片若干混じる		22.	.49	2 13 9	34 3	 ¶												18
	= 23 E				[····							23,	15 1		3 33	0						1						
	24											23.	15		2										-			
	÷ or				(· · ;			1	l			24.	.45	4 13	30													
25.00m(付近、貝殻(二枚貝)混じる 25.00m(付近、貝殻(二枚貝)混じる 25.50m(付近、貝殻(二枚貝)混じる 25.50m(付近、貝殻(二枚貝)混じる 25.40m(以深、シルト分多くなる 3.50m 11.00m 3.0m	- 20									25.00m付近、貝殻(二枚貝)混じる 25.40m以深、シルト分多くなる		25.	.15 1		36	9												
	- 26				ſ	1		非				26.	.15]	1 2	4	Η							 		-			

図-3.2.11 ボーリング柱状図(茨城県稲敷市浮島)

(3) 試料採取

乱れの少ない試料は基本的にトリプルチューブサンプラーを使用して採取した。**写真**-3.2.1に各地でのトリプルチューブサンプラーによる試料採取状況を示す。また,**図**-3.2.12 ~**図**-3.2.16にサンプリングに関する柱状図を示す。

(1) 尼崎市築地

(2) 浦安市高洲

(3) 諏訪市豊田

(4) 大阪市港区弁天町

(5) 稲敷市浮島 **写真-3.2.1** トリプルチューブサンプラーによる採取状況

調 査 名 尼崎築地地区の地盤調査

						리이	1	1	1	口 化喃染地地区/	ノ地子	经而	tin) (Ш.									ボーリ	レングNo 2					
						事業	ŧ	I	事名	名														シートNo	101 104				
ボ	- y	ン	グ名							調査位置					尼峰	奇簗	地地	区築	地公	開				北緯	$3~4$ $^{\circ}$	42	' 3	8 "	
発	注	機	関						大	阪市立大学				周査	期間	1 1	成 28	年 6	月 12	ен ~	28年	6月	14日	東経	135	° 2	5'	ō "	
調	査	* 1	者 名	基礎	植地盤: 電	コンリ 2話((+123 06-	タン 186	ツ材 51-	^{k式会社} 主任技師 久保	田耕	司	1	見て	増え		林	勝美	コ鑑	ア定者	浜	Ш	茂	ボーリング 責任者	門	7	5次	郎	
孔		標	高	+0	TP . 15m	角	180	9	10°	方 3℃ 0° 地 270° 90° 盤 鉛水	<u>来0。</u>	使用		式 銷	生桃	ŧ	ベル	· -7	ウン	ディ	ン	ハンマ	マー 用具	¥	自動	落ト			
総	掘	進	Ę	2	1.80m	度	下- 0°	al .		西 ↓ 東 24 而 向 180° 南 配 90°		機種	-	エン	ジン		ヤ	ンマ	— N F	- 8 0 1	I	ポン	プ	力。	ノ — M	G - 1	0		
標	櫻	щ.	層	秶	柱	+	色	相	相	22	£	_				梧	(進	貫	入試	驗			原	位置試	臉試	料将	和	乾 :	掘
						135		61			水位	深	ę 10)cm∠{	<u>b</u>	打戰							深	試驗	名 深	試	採	内試	11-
尺	葿	5	厚	度	状	儨		对	对		11/. (m)		1	回望	1数	「回数			Ν	值				および結 /	果	料	盿	験	進
						X		密	稠		测定	度	E	10	20	/ 貫入							度		度	番	方	3	月
(m)	(m	ı)	(m)	(m)	X	分	調	度	度	事	月日	(m) 1	0 20	30	八 量 (cm)	0	10	20	30	40	50	60 (m)	λ	(m)) 号	法	\sim	H
						öb				(砂油粗砂。φ2~30mmの純混じる。 φ550~100mmの大撥、玉石点在す る。φ20~100mmの大撥、玉石点在す																			1
	1					碟	袍			リート点在する。 レンガ片、プラスディック等ガラ提 じる。																			5
78	2 -2	2.10	0.65	1.90		シルト 混じり	旿			↓100mm位のコンクリート片港じる。 砂は粗砂、↓2~20mmの鎮湿人、貝片 若十説じる。全体に続き。															9.00	Jr-1			18
	3					(1) (現) (現) (現)	14			2.4m日数月多く提入する。 砂は細砂~中砂、52~15mmの観温 じろ。 日初に、かなく得しまた。	3,00						<u></u>	_					_		2.71 3.00	<u>)</u>			and as
	4 _3	185	1.75	4.30		じり砂	裕			日成月 市多く建へりる。 全体に続い。 階灰色ブロック状に挟む。下居治は 知道主体とわる。							<u></u>	_	_				_		3.90 4.00	Tr 2			ala.
	5					砂質シ	暗灰			上部シルト(細砂シーム)(に実行) 日設方混人、全体に細砂多く混じ															4.40 5.00	5			La a
	-1	1.90	1.05	5,35			~~			る。下層部シルトラアンない。 数は編載。 会体にシルトベルがい、ためのド															5.5	Tr 4			
Ē	6					\$	40			ードローンルトカンない。小白語し る。 も2~5mmの小磯語じる シルト短期:上にへった井に封す。							-								6.00	Tr 5			Long L
	7					ルト	1回 1			粘トプロック状で所々挟む ゆ2~5mmの小薬油じる															7.00	Tr-6			and the
1	8					可砂	bK.			暗灰のシルト状む															8.0	70-7			1.11
-	98	3.85	3.95	9,30						8.7mから砂は激糾砂となる													-	LLT	<u>8,8</u> 9,13	-			8
1	0				====	シル	將灰			微細砂混じる。貝製混入。 沖砂 (実具片多い) シーム状に所々													9.60		9.90	1 1 5			10
	-9	9.90	1.10	10.40																			10.75	LLT	10.9	0 T 2			
					=					上部、1977年起じる 粘性大 月殻混人															11.0	9 T-3			100
	2																						12.75	LLT	12.1	3T 4			6/1
- 1	3				_												÷						-	*******	13.0	2 7 5		-	12
1	4						84												_				-	U.T	<u>13.9</u> 14.0	0 0 T-6			and an
- 1	5				_		K I			貝片混入(「枚貝) 均質な粘土								_	_				14.75		14.9	<u>0</u>			, in
- 1	6					粘上	育灰)											_	_				_		15.9	0			line.
E,	7				_		略音																		16.9	T-8			les et
					=		灰			貝殻庁多く温入する															17.0) T9			1
	8			1111	_																				18.0	0 7-10			10
1	9				_																				18.9	/ Г т н			10
- 2	0			100						均質な粘土、粘性大 回熱性の思みかたくやみ									-				-		<u>19.9</u> 20.9	2			Inter
2	1 -20	0.80	10.85	21.25						S DAY I VIEW X S ALL Y & G															89.8	y			-
2	21	1.35	0.55	21.80	/	砂混じ り粘土	隋天			洲的バイブ状、シーム状に狭行 淡褐ブロック状に挟む、具装組入								_	_						21.9	7-13			6 11
Ē.	2																												1
	0																												1111
f 2	4																												d on the

図-3.2.12 サンプリングに関する柱状図(尼崎市築地)

調 査 名 浦安市高洲8丁目地盤調査

ボーリングNo

_					8	事業	ŧ •	工事名																		シー	- HNo					
ボ	— IJ	ン	グ名			Ν	o.:	2	調査位置				Ŧ	棄り	ト 浦	安市	百高	洲 8	T	日 2	0 - 4					北	縦	3	5 "	37'	53	"
発	注	機	関										調	査期	間	平成	294	年 7	月	22	口 ~	29	年 7	月 2	5 🗆	東	絕	13	9°	54'	55	"
調	査	業者	皆名	基裔	き地盤: 電	ュンサ 話(0	10-4	マンツ株式 4861-70	:会社 100) 主任技師	久保田	耕	ei]	現代	琿	場人	林	甩	券 美	i i	口鑑	ア 定者	, +	:島	昭	彦	ボー 青	リンク任者	ř	門	万岁	、朗	
孔		標	高	+3	TP . 67m	角	180° 上	方	北 0° 地	i Kalé	~	使田	試	錐	機	~	ミル	-7	לי ז	~	ディ	~	ハ 落	ンマ	<u> </u>	~	ś	ド 白	動落	下		
総	掘	進	長	30). 80m	臣	F	- ⁹⁰		節了		機種	т	ンジ	ン		+:	1-7	-	NF-	- 8 0 1	H	オ	ン	プ		力	1 -	MG	-10		
_	01202					19.	10	[P4]	180 119 🛋	. 90		11																	NEVINEY			
標	枝	栗	層	深	柱	±	色	相相	記		孔内					標	準	貫	入	試	験				原	位	置討	、験	試業	採販	室	掘
						晳		차 차			水位	深	10en	ごとの	打撃						际				深	就	験	名	深	試 採	記殿	谁
尺	ŕ	÷.	厚	度	釆			101 101			(m)		0	¥回券	い数				1	N	¶H.				-	40	よいり		-	料取	家	~
						区		密欄			測定	度	2	10 20	, Ц										度				度	番 方		月
(m)	(п	n)	(m)	(m)	X	分	調	度度	事		一月二十二	(m)	10	20 30	人 量)(m										(m)	Ļ			(m)	号 江	Ļ	
E					12	シルト	B/Y	<i>表</i>	土にレキ泥じる 計測的						- (c.u.,	. 0		10	- 20		30	-10	50	60		Ì						1.1
-	1	2.27	1.40	1,40		質砂	档	灵	ガラ片多く混ざる																							
Ē	2				4	シルト 質粘止	暗灰	合	体に軟らかい、粘性大							-		-	+		_		-									-
Ē	3	0.77 0.37	1.50 0.40	2.90 3.30		新 (作)	脱火	本合	片、本剤混さる 体に均一																							-
E	4					位置シ	₽₽	合	体に軟らかい							- 27			-		_		_	2		1000						1
	5 _	1.68	2.05	5.35		ルド	.K	<mark>.</mark> 貝:	ガラ片記じる																							- Contraction
	6					101		4	he k:																			i	6.36	Tr-1		
Ę	7					利	暗灰	E: øl	ボウ片多く提じる 10~20mm位のレキ混じる	22						-													6.50	Tr 2		_
E	8	1.13	2.45	7.80																									7.50 8.10	Tr 3		1.11
	q							合	体に均一																				8.10 9.10	Tr-4		12
È,									ガラ片記入																				9.10	Tr-5		1
	0							合	体に均一																				10.10	lr 6		1 miles
	1					#	IPE	砂	賞シルトを薄層に挟む							-													11.10	Te-7		4
= ¹	2					109	灰	100	插上 國於 林 ()																				12.10 12.10	Tr S		
- 1	3							樹	賞シルトをシーム状に挟	t																			13.10 13.10	1		-
1	4							Ē	層部の一部砂質シルトと	の有層状											_		-	6		30000			14.10 14.10			1
1	5 -1	1.93	7.80	15.60																									15.10 15.58	r-10		
- 1	6		10.00	10.00	14			Ŀ	部に通知回来と思いス							-					_		_	2					15.50	T-1		-
-1	7					砂質	IP	5.9	and for the former of the second							-		_	+		_				ā.				16.40	T-2		1
- 1	8				22	n	灰	全	体に軟らかい									_	_				_						17.30	T-3		_
- 1	9 -1	5,58	3.65	19.25	2655 	i.		約	性大 値に目出が方式の考え							-			_						15,70	孔	内水平市	以荷試測	18.20 19.10	T-4		1.0
1 2	0								and the second second																19.30				20,00	T S		1
E 2	1			1																					20.50	孔	内水平市	以荷试系	20.90	T 6		1 1
E	- -			0.00	-			소	体に均質で戦らかい																21.10				21.80 21.80	T -7		
Ē	0			8				料	性大 APSU ALA																22.20	孔	杓水平井	以份試測	R12.70	T-8		-
- 2	3				_		禄	<u>д</u>	ガラ川龍人																22.90				93.60 23.60	1-9		24
2	4						火と																		-				24.50 21.50	1 10		- to the
E 2	5					粘土	一禄 /	合	体に均質。粘性大							8								-		1			25.40 25.40	7-11		
E 2	6				=		暗秘	, A.	11 (H) (A [*] H) (A [*]							- 27			+				+	8		-			26.30 26.30	T-12		
2	7			2			灰	(希)	只能さる																				97.90 97.20	T-13		
2	8																												28.10 28.10	1 14		
2	9																												29.00 29.00	T=15		
3	0							見	片混入																				29.90	T-16		
= 3	1 2	7.13	11.55	30.90				33	端部に砂質上混ざる																1				30,80	1 17		150 T
ŧ																																1

図-3.2.13 サンプリングに関するボーリング柱状図(浦安市高洲)

				調	Ž	5 1	名 2017年	諏訪市	豊田	•	湖ī	莉 には	さけ	る	也盤即	哥查					ボーリ	ングNo	0				
				事業	÷.	エ事名	Z															シート	No				
ボー	リン	グ名		N	ο.	2	調査位置	諏訪	市日	豊田	日字	湖畔	186	5 6	1 「農	教田 沪	終末	処理	場前	公園」		北	緯	3 6 °	1 '	58	3 "
発	注框	幾 関				大日	阪 市 立 大 学				調	査期間	5 T	成	29年	8月	24	H~	294	F 月	H	東	経	138	5	, 1	3 "
調	12 業	者名	基礎地盤	コンり B話(C	- N 3	レンツ株 1861-	(式会社 7000) 主任技師	」 久保田	ŧ	非冒	現代	理	易人	林	勝事	爰	コ 織 1	ア者	大县	島 B公	彦	ボーリ 青 F	ング F 者	門	万	次日	朗
孔		票高		角	180° 1:	90"	方 270° / 1、90°	地盤加水	₽0°	使用	試	錐材	畿	~	: n	マウ	ン	ティ	ン	ハンマ落下用	一具		半	自動者	茶下	8	
総	掘汕	進長	20, 25m	度	F-	7	西 「 180° 南	勾 配 90°	4.00	機種	т	ンジ:	,		ヤン・	~ — I	NF-	8 0 H		ポン	プ		カノ	— M G	- 1	0	
	tor.	-	and the		-	la la	~		Ŧ		_				vii	-	ab	ICA.			142	(h. 11		100 ale 1			
標	標	層	深 柱	±	色	相相	μĊ		内水	375	10c	m. デンクン	7 打	宗	準 貝	人	7年	粳			尿	位 値 1社	(武))類 (武才 名) ※	가张 _고	取 :	至 770
	ė:	ler'	· 世·	質		対 対			位. (m)	114	: 11 1	¥回教	「「「「「「「「」」」			Ν	N	値			1/15	およ	び結り	■ (朱 耒	675.	休日	殿 進
	[2]	77-	17 1/	区		密棚			測	度	0	10 20	201								度	Ĺ		度	19	古	月
(m)	(m)	(m)	(m) 🖾	分	38	庫庫	南		定月	(m	5 10	5 5	入量								(m)			(m)	쁘	注 、	- н
E	2.07	0.40	0.40 <u>3939</u> 3	砂礫	档	-	(のは現1少。62~30mmの) 650~100mmの大レキ混	レキ混る	Н	111	/ 10	20 30	(cm)	0	10	20		34)	40	50 6	(m)	1		7 (117		124	9
1				砂混り シルト	暗褐ー語		砂は十〜粗砂。全体に載 610~50mmのレキ混る 100-200mmのレキ混る	(L) (/	8/2- 1,4)											_							
2		1.20	1.60	砂質シルト	略		 0.100~200mm/2 Rモル3 細砂混る。62~20mm/2 Rモル3 2.30mm & IS0mm/2 玉(15) 	M上する レギ混人 古在まる	~																		
E 3		0.95	2.55	(it)			合水大 相砂を薄層で所々挟む															-		2.40	Tr 1		
		1.15	3.70	10	灰		砂レキ若干記る 砂質シルト・粗砂を薄層	で快行																$\frac{3.50}{3.50}$			
F 4		0.95	4.65	11 70	原		含水大 る2~3mm小レキが全体に ヘケにめ、こへまま。	:混る													1			4.40			1
E 5		0.60	5.25 5.55	細砂	· 嗟灰		全体にの「で含水大 4.90m中修挟む 100寸線00」には100点入							-							-				Tr 3		
6		0,60	6.15	<u>夏10</u> 砂質シ ルト	暗褐灰		形は細少(均一) 後細をシーム状に挟む	/ 																3.73 3.73	T)(
7							<u>和時を清増で決む</u> 7.00m附近より中心主体	で何何状																6.75 6.75			-
1 8				1)r 709	暗灰		シルト質砂、砂質シルト	挟む																7.75 7.75			1
		2,50	8.65	砂笛シ	時褐		創砂をシーム状で挟む																	8.7a 8.75	Tr=6		
- 9		0.55	9.20 9.40 = z z z	ルト <i>細砂</i> 砂管シ	灰 喧灰 暗褐		病植上薄層で挟む シルト質砂をシーム次1	3 1×1 2																9.75	Tr-7		
10		0.70	10.10	JU F	灰		腐植上層技む																	9,75	Tr-8		
- 11				和	Fit		所々シルト質砂挟む							-		_		-	-	-	-			10.75	Tr 9		-
F 12				Q9/	lik.		121-112 N -							_		_			_					11.75 11.75	- T10		- Internet
13		2.45	12.55 	砂灯シ	醉		腐種物理る	12.1																12.75	-		8
-		1.25	13.80	NF	褐		高幅10回、漫画で温続に 高幅物多く記る	3KLP																13.85	T 1.		-
- 14							微砂混る 羽性大																	14.65	T 2		-
- 15							黒灰色シーム状に挟む 腐植物が多く混る							-					1		1			15.63	T-3		1
16					- 档~			112 112																15.75	T-1		
- 17				シル	暗档		黒灰色シーム状、ブロッ	ク状で狭む																16.62	T-5		
- 18			====	ŀ	(黒		粘性大 腐植物が混入する																	17.55	1.6		
					() () ()																			18.45 18.45	17		
E 19					褐		19.00m附近、黒灰色を挟	He.										1			1			19.35			1
20		6.45	20.25		-		anori, ^e MV.																	20.25	1-8		25
21																_		-			-						in la
- 22														-		_		-			-						-
F.																											1

図-3.2.14 サンプリングに関するボーリング柱状図(諏訪市豊田)

調査名 (2018) 関西の液状化地盤の詳細評価に関する研究

図-3.2.15 サンプリングに関するボーリング柱状図(大阪市港区弁天町)

ボーリ	リング柱状図

																										~	, ,	/ 110.			_		
					事業	ŧ	I	事名	3																		-	ンートNa.					
ボー	-リン	ノグ名			稲敷	Ν	ο.	2	調査位置					茨	城	県	稲!	敗市	í浮	島 6	128	3付礼	ŕ				1	と 緯					
発	注	幾関	1										1	調査	E期	間	平	成:	30年	= 9J	1	9日	~ 30	0年 9)月	21日	J	東 経					
調	査 業	者名	基础	き地盤コ.	ンサルら 電話 ()	シンツ	株式	会社	関西支社 7000) 主任技師 「	中 井	健	博		現代	ŦØ	場人	I	中井	ß	悲博	コ袋	÷	アオ	大島	昭	彦	7 7	ドーリング	I	明	万ど	欠身	明
孔		標高		TP	角	180°	101		方北。他	1.77	02	信	ŧ	試	錐	機	東	邦北	也下	工機	DI	L-C4	8LX:	S1 /	シマ	-	2	<u>ч н н</u> ¥	自動	」落	下		
総	掘	准長		14, 50m	ete	F)-9	0°	270° ← 90° 萬 西 東 勾	鉛厂	-0.	月枝玉	日義王	I :	ッジ	2		+:	17		ΤF	120	V - E	74 7	<u> キャ</u> ギン	見プ	-	東邦地	ΤŢ	機	BG	- 4	1 L
1.0					度	0°			□ 180° 南 □ □ □	90°		杠	<u> </u>		-	-	_	53								-		4-21 E					
標	標	層	深	柱	土	色	相	相	記		孔内						梘	[3]	<u>年</u>]	買ノ	、部	い験				原	位	2 置 試	験声	も料	採用	 	室掘
					REFE		-44	44			水位	1	采 1	0cm 3	: 20	力	ľ									深	1	試 驗	名)	梁	試技	采	内 試
尺	高	厚	度	状	Q		×	×			(m)		Ŧ	丁黎	回麦	「回数					Ν	ſi	Ĕ.				1	および結	[果	5	料耳	段!	験 理
					区		密	稠			測	B	g (0 1	0 20) / 農	∂ €									度			1	度	番ノ	5	月
(m)	(m)	(m)	(m)	127	分	303	度	庶	本		正 月	6				員	k									(m)					县 3		_ _H
E	(m)	(III)	VIIIV			11-2	<u> </u>	~		-	日	1	1/1	0 2	0 30) (cr	n)	0	- 1	0	20	30	40	5) 6	0 (11)			7.9		-5 12	-	
Ē 1					. @	暗褐~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			砂は中砂主体 φ2~30mmの礫混じる												_								_				
Ē.	1.3	5 1.85	1.8	15		304 144																											
Ē	0.7	0.65	2.5	0	·シルト語 ・じり砂	8 暗灰			砂は細砂。木片多く混じる																	1			2	.50	-		
= 3					2 2				砂は甲砂。含水大 所々礫混じり層薄層挟む									-	-		-					-		0	1	т	ú~1		
Ē 4					:														_										3	.50	£-2		
Ē					. 25	福ノ																							4	.50			
5						暗灰															1					1			5	50 T	r-3		
6									下層部、貝殻片若干混じる									-	-		-					-			-	.30 T	û~4		
Ē 7	-3.9	4.60	7.1	0																									6	.50	Dr-5		
-				11					砂は細砂。含水大 貝殻片混じる																				77	.50 .50			
8																					1					1			8	.50 T	r-6		
E 9				11														-	-		-			_					-ľ	.50 T	û−7		
E 10					ト	暗灰													_									-	9	50	ſr−8		
				11	· 砂				一部貝殻庁多く混じる																	1			10	0.50			
E 11				1														F			T					1				1.50 T	r-9		1
12	-9.2	5,30	12.4															-	-		-									T	r-10		9
13	0.0	0.00	10.1						砂は細砂。均一 含水大																				12	2.50 2.50	r-11		20
10				1	·シルト語 じり砂	B 府																				1			13	3.50			
14	-11.3	2.10	14.5	io	,				一部、シルト分多い									-	-		+					1				T	r-12		97
Ē																			_										14	1.50	-1		

図-3.2.16 サンプリングに関するボーリング柱状図(茨城県稲敷市浮島)

採取した試料は含水状態が変わらないように現地にてパラフィンシールを施し、振動吸収マットに乗せた状態で試験室に運搬した。その後、試料を押し抜き機にて抜き出した(**写真**-3.2.2 参照)。ただし、細粒分が少なく自立しない試料については凍結後に抜き出した(**写真**-3.2.3 参照)。

写真-3.2.2 抜き出し試料(尼崎市築地 Tr-4)

写真-3.2.3 抜き出し凍結試料(浦安市高洲 Tr-2)

(4) 試験条件

抜き出した試料は、基本的に上下端を除いて繰返し三軸試験と繰返し中空ねじりせん断試験の試料を交互に計画した(3供試体×2試験法を基本とした)。**写真-3.2.4**,**写真-3.2.5**にその例を示す。

写真-3.2.4 各試験に使用する試料(諏訪市豊田 Tr-4)

写真-3.2.5 各試験に使用する試料(弁天町 Tr-13)

また、繰返し三軸試験の供試体は直径 5cm×高さ 10cm (写真-3.2.6 参照)とし、繰返し中 空ねじり試験は外径 7cm×内径 3cm×高さ 7cm (写真-3.2.7 参照)とし、供試体を成形した。

写真-3.2.6 繰返し三軸試験に供する供試体(尼崎市築地 Tr-4)

写真-3.2.7 繰返し中空ねじり試験に供する供試体(尼崎市築地 Tr-4)

供試体を試験機にセットし、飽和した後に背圧 200kN/m²を加え B 値≧0.95 を確認した。

試験条件としては両試験ともに等方圧密状態とし、拘束圧は各採取深度における有効土被り 圧 *p*₀を基に *K*₀=0.5 を仮定した平均主応力の'(=2/3 *p*₀)に設定した。なお、載荷条件としては周 波数 0.10Hz の正弦波とした。繰返し三軸試験および繰返し中空ねじり試験の状況を**写真**-3.2.8, **写真**-3.2.9 に示す。

写真-3.2.8 繰返し三軸試験状況

写真-3.2.9 繰返し中空ねじり試験状況

(5) 試験結果

図-3.2.17~図-3.2.21 にそれぞれ尼崎市築地,浦安市高洲,諏訪市豊田,大阪市港区弁天町,稲敷市浮島の繰返し中空ねじり試験と繰返し三軸試験による液状化曲線を示す。

基本的に 3 供試体の試験結果から繰返し載荷回数 $N_c=20$ で繰返し三軸は軸ひずみ両振幅 DA=5.0%、繰返しねじりはせん断ひずみ $\gamma_{DA}=7.5\%$ が発生する繰返し応力振幅比(液状化強度比 R_{L20})を算出した。その結果、尼崎市築地では繰返し三軸で $R_{L20}=0.208\sim0.351$ 、繰返し中空ね じりで $R_{L20}=0.283\sim0.352$ が得られた。ただし、Tr-1 及び Tr-3 の繰返し中空ねじり試験では R_{L20} が得られなかった。浦安市高洲では繰返し三軸で $R_{L20}=0.266\sim0.313$ 、繰返し中空ねじりで $R_{L20}=0.273\sim0.328$ が得られた。諏訪市豊田では繰返し三軸で $R_{L20}=0.187\sim0.425$ 、繰返し中空ね じりで $R_{L20}=0.300\sim0.439$ が得られた。大阪市港区弁天町では繰返し三軸で $R_{L20}=0.240\sim0.313$ 、 繰返し中空ねじりで $R_{L20}=0.299\sim0.379$ が得られた。稲敷市浮島では繰返し三軸で $R_{L20}=0.178\sim$ 0.240、繰返し中空ねじりで $R_{L20}=0.205\sim0.248$ が得られた。

図-3.2.17 尼崎市築地の液状化曲線(つづく)

図-3.2.17 尼崎市築地の液状化曲線(つづき)

図-3.2.18 浦安市高洲の液状化曲線(つづく)

図-3.2.18 浦安市高洲の液状化曲線(つづき)

図-3.2.19 諏訪市豊田の液状化曲線(つづく)

繰返し中空ねじり試験

繰返し三軸試験

図-3.2.19 諏訪市豊田の液状化曲線(つづき)

飛返し一軸武

図-3.2.20 大阪市港区弁天町の液状化曲線(つづき)

図-3.2.21 稲敷市浮島の液状化曲線(つづく)

図-3.2.21 稲敷市浮島の液状化曲線(つづき)

表-3.2.1 に繰返し三軸試験と繰返し中空ねじり試験による液状化強度の比較表を示す。また、図-3.2.22~3.2.26 に液状化強度の深度分布及び繰返し三軸と繰返し中空ねじりによる液状化強度の相関図を示す。軸ひずみ DA=5%(せん断ひずみ yDA=7.5%)で整理した値と過剰間隙水圧比 95%で整理した値を表示しているが、図-3.2.22 の尼崎市築地では繰返し三軸試験と繰返し中空ねじり試験による液状化強度比は同等もしくは繰返し中空ねじり試験による液状化強度比は同等もしくは繰返し中空ねじり試験による液状化強度比はほぼ同等であった。図-3.2.24 の諏訪市豊田では繰返し三軸試験と繰返しねじり試験による液状化強度比は繰返し中空ねじり試験による液状化強度比は強度し中空ねじり試験による液状化強度比は最近し中空ねじり試験による液状化強度比は同等もしくは繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られた。図-3.2.26 の稲敷市浮島でも繰返し三軸試験と繰返し中空ねじり試験による液状化強度比は同等もしくは繰返し三軸試験と繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られた。図-3.2.26 の稲敷市浮島でも繰返し三軸試験と繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られた。

化強度の比較表
よる液状
り試験に。
中控ねじ
と繰返し
三軸試験
繰返し
表一3.2.1

									// 十字目》	「日子昭が	理11	中一些零	なという
調査箇所	試料名	採取深度	N ($\hat{\mathbb{I}}$	N_1	深度	湿潤密度	乾燥密度	急水比	い が し を が ろ 本 を の	試験によ	ZR_{L20}	試験にし	$5R_{L20}$
		(GL-m)				$\rho_{\rm t}({\rm g/cm}^3)$	$ ho d(g/cm^3)$	$W_n(\%)$	$F_{\rm c}(\%)$	DA = 5.0%	N_{u95}	$\gamma_{\rm DA}=7.5\%$	N_{u95}
	Tr-1	2.00~2.75	2.5	3.1	2.38	1.936	1.667	16.2	15.2	0.276	0.261	得られず	得られず
	Tr-2	$3.00 \sim 3.90$	2.5	3.1	3.45	1.904	1.620	17.5	11.2	0.288	0.277	0.352	0.354
尼崎市	Tr-3	$4.00 \sim 4.40$	n	3.7	4.20	1.879	1.470	28.7	25.4	0.351	0.335	得られず	得られず
築也	Tr-4	5.00~5.87	8	8.5	5.44	2.003	1.694	18.2	10.8	0.290	0.283	0.348	0.350
	Tr-5	6.00~6.70	9	6.6	6.35	1.900	1.562	21.8	11.9	0.208	0.213	0.283	0.289
	Tr-7	8.00~8.87	10.5	10.1	8.44	1.852	1.376	34.8	27.4	0.293	0.273	0.299	0.285
	Tr-1,2(GS-1,2)	5.50~7.40	L	8.9	6.45	1.873	1.501	25.6	8.0	0.305	0.298	0.294	0.286
	Tr-3,4	7.50~9.10	15	17.4	8.30	1.811	1.375	32.1	8.3	0.310	0.292	0.328	0.272
浦安市	Tr-5,6	$9.64 \sim 10.62$	4.5	4.4	10.13	1.866	1.407	32.9	22.1	0.313	0.304	0.286	0.281
家恒	Tr-7	$11.10 \sim 12.10$	3.5	3.1	11.60	1.799	1.287	40.1	22.6	0.300	0.292	0.285	0.279
	Tr-8,9(GS-8,9)	$12.10 \sim 14.10$	8.5	7.4	13.10	1.799	1.296	38.9	12.6	0.307	0.293	0.283	0.277
	Tr-10	$14.10 \sim 15.10$	13	10.5	14.60	1.797	1.315	36.7	21.0	0.266	0.250	0.273	0.261
	Tr-2	$3.61 \sim 4.23$	6	12.9	3.92	1.586	1.366	16.2	7.9	0.218	0.218	0.330	0.331
世界世界	Tr-4	5.86~6.49	8	10.1	6.18	1.535	1.220	27.1	13.7	0.425	0.368	0.439	0.474
	Tr-6	7.75~8.37	9	6.1	8.06	1.465	1.036	42.6	26.2	0.187	0.180	0.300	0.306
日 内	Tr-8	$9.98 \sim 10.61$	11	10.5	10.30	1.552	1.194	30.8	16.6	0.250	0.248	0.400	0.419
	Tr-10	$11.78 \sim 12.53$	9.5	8.2	12.16	1.559	1.261	23.9	9.4	0.260	0.250	0.370	0.375
	Tri-2	$5.50 \sim 6.48$	3.5	4.6	5.99	1.938	1.502	28.8	49.1	0.240	0.240	0.337	得られず
	Tri-13	$6.50 \sim 7.41$	4.5	5.3	6.96	1.957	1.549	24.9	23.8	0.283	0.234	0.328	得られず
大阪市	Tri-4	$7.50 \sim 8.48$	11	12.4	7.99	1.815	1.377	30.6	35.0	0.296	0.282	0.299	0.350
弁天町	Tri-5	$8.50 \sim 9.47$	7	7.7	8.99	1.812	1.356	31.5	38.3	0.278	0.257	0.318	得られず
	Tri-6	$9.50\!\sim\!10.50$	7	7.3	10.00	1.765	1.232	43.3	66.3	0.303	0.265	0.379	得られず
	Tri-7	$10.50 \sim 11.50$	9	6.1	11.00	1.700	1.145	47.2	77.2	0.313	0.352	0.333	得られず
	Tr-1	$2.50 \sim 3.50$	5.5	8.1	3.00	1.710	1.552	10.3	5.3	0.178	0.177	0.248	0.244
	Tr-3	$4.50 \sim 5.50$	16	21.7	5.00	1.684	1.481	13.9	7.5	0.179	0.172	0.205	0.205
茨城県	Tr-5	$6.50 \sim 7.50$	11	13.4	7.00	1.687	1.379	22.3	14.0	0.218	0.196	0.213	0.204
稲敷	Tr-7	8.50~9.50	11.5	12.5	9.00	1.723	1.369	25.9	21.4	0.205	0.196	0.229	0.216
	Tr-9	$10.50 \sim 11.50$	6	8.9	11.00	1.713	1.304	31.5	31.0	0.240	0.235	0.240	0.234
	Tr-11	$12.50 \sim 13.50$	14.5	13.6	13.00	1.725	1.346	28.2	19.8	0.229	0.222	0.235	0.220

図-3.2.22 液状化強度比の深度分布及び相関図(尼崎市築地)

図-3.2.23 液状化強度比の深度分布及び相関図(浦安市高洲)

図-3.2.24 液状化強度比の深度分布及び相関図(諏訪市豊田)

図-3.2.25 液状化強度比の深度分布及び相関図(大阪市弁天町)

図-3.2.26 液状化強度比の深度分布及び相関図(稲敷市浮島)

今までに同様の比較試験を実施した大阪市住之江区泉、大阪市西淀川区中島、大阪市北区う めきた、長野県諏訪市上川、熊本県益城町を合わせて繰返し三軸試験と繰返し中空ねじり試験 による液状化強度比の地点ごとの比較を図-3.2.27に示す。ややばらつきはあるものの、繰返 し三軸試験と繰返し中空ねじり試験による液状化強度比は同等もしくは繰返し中空ねじり試 験による液状化強度比の方が大きい傾向が見られた。一方、図-3.2.28 には細粒分含有率 $F_c \leq 50 \ge F_c > 50$ に分けた比較を示す。 $F_c > 50$ では両試験結果は同程度であるが、 $F_c \leq 50$ では 繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られる。

また、液状化強度比の差(繰返し三軸試験による液状化強度比-繰返し中空ねじり試験による液状化強度比)と N₁値(有効上載圧 100kN/m²相当に換算した N 値)や細粒分含有率 F_c等の各種物理特性及び試験深度との関係を図-3.2.29~3.2.33 に示す。いずれの物理特性及び 深度についても明確な相関性は認められなかった。

図-3.2.29 繰返し三軸と繰返し中空ねじりによる液状化強度比の差と N1 値の関係

図-3.2.30 繰返し三軸と繰返し中空ねじりによる液状化強度比の差と 乾燥密度 ρ_αの関係

図-3.2.31 繰返し三軸と繰返し中空ねじりによる液状化強度比の差と 細粒分含有率 F_eの関係

図-3.2.32 繰返し三軸と繰返し中空ねじりによる液状化強度比の差と含水比 wnの関係

図-3.2.33 繰返し三軸と繰返し中空ねじりによる液状化強度比の差と試験深度の関係

(6) まとめ

尼崎市築地、浦安市高洲、諏訪市豊田、大阪市港区弁天町,稲敷市浮島において、砂質土を 対象に乱れの少ない試料を採取し、繰返し三軸試験と繰返し中空ねじり試験を実施し以下の結 論を得た。

- ・尼崎市築地では繰返し三軸試験と繰返し中空ねじり試験による液状化強度比は同等もしくは
 繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られた。
- ・浦安市高洲では繰返し三軸試験と繰返しねじり試験による液状化強度比はほぼ同等であった。
- ・諏訪市豊田では繰返し三軸試験と繰返し中空ねじり試験による液状化強度比は繰返し中空ね じり試験による液状化強度比の方が大きい傾向が見られた。
- ・大阪市港区弁天町では繰返し三軸試験と繰返し中空ねじり試験による液状化強度比は同等もしくは繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られた。
- ・大稲敷市浮島でも繰返し三軸試験と繰返し中空ねじり試験による液状化強度比は同等もしく は繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られた。
- また、今までに同様の比較試験を実施した大阪市住之江区泉、大阪市西淀川区中島、大阪市北 区うめきた、長野県諏訪市上川、熊本県益城町を合わせて以下の結論を得た。
- ・繰返し三軸試験と繰返し中空ねじり試験による液状化強度比はややばらつきはあるものの、
 繰返し三軸試験と繰返し中空ねじり試験による液状化強度比は同等もしくは繰返し中空ねじり試験による液状化強度比の方が大きい傾向が見られた。
- ・液状化強度比の差(繰返し三軸試験による液状化強度比-繰返し中空ねじり試験による液状 化強度比)とN値や細粒分含有率等の各種物理特性及び試験深度との間には明確な相関性は 認められなかった。

【参考文献】

- 1)「道路橋示方書·同解説V耐震設計編」日本道路協会
- 2)「液状化の調査から対策工まで」鹿島出版会

3.2.2 各指針による液状化強度と液状化試験結果との比較

液状化危険度を予測するためには、対象とする地盤の液状化強度と地震時に地盤に作用するせん断応 力を求め、両者の大小関係により液状化するかしないかを判断することになる。簡易法においては、地 盤の液状化強度は標準貫入試験のN値や粒度試験結果に基づいて算定されることになるが、算定方法は 各指針により様々である。また、地震時に地盤に作用するせん断応力についても、最大のせん断応力を 用いるものと一定振幅の正弦波と等価なせん断応力に換算した値を用いる指針がある。

ここでは,各指針の液状化判定手法について整理するとともに液状化試験結果と各指針による液状化 強度との比較,指針ごとの液状化判定結果の比較を実施した。

(1) 各指針の液状化判定手法

これまでに全国各地のいくつかの地盤を対象として、液状化試験結果と道路橋示方書などの各指針により求めた液状化強度比の比較を行い、道路橋示方書や東京ガス式¹⁾で求めた液状化強度比が他指針と比べて試験結果との整合性が良いことが確認されている²⁾。ここでは、繰返し三軸試験と繰返し中空ねじり試験による液状化強度比の比較を実施した 10 地点において、以下に示す指針を対象として液状化試験結果と各指針による液状化強度比の比較を行った。

・道路橋示方書・同解説V耐震設計編 平成24年3月 社団法人日本道路協会(以下,"H24道示")

・東京ガス式(以下,"東京ガス")

・道路橋示方書・同解説V耐震設計編 平成 29 年 11 月 社団法人日本道路協会(以下, "H29 道示") 以下に各指針の液状化判定手法の概略について述べる。

①"H24 道示"の方法

"H24 道示"では沖積層の土層で,次の3つの条件全てに該当する場合においては,地震時に液状化が 生じる可能性があるとしている。

・地下水位が地表面から 10m 以内にあり、かつ、地表面から 20m 以内の深さに存在する飽和土層

・細粒分含有率 FC が 35%以下の土層, または, FC が 35%を超えても塑性指数 In が 15 以下の土層

・50%粒径 D₅₀ が 10mm 以下で、かつ、10%粒径 D₁₀ が 1mm 以下である土層

地盤の液状化抵抗 R は標準貫入試験の N 値と粒度試験結果によって次式のように算定する。

 $R = c_{\rm w} \cdot R_{\rm L}$

ここで、 $c_w = 1.0$ (レベル1 地震動およびレベル2 地震動タイプI)、レベル2 地震動タイプIIに対して は、 $c_w = 1.0$ ($R_L \le 0.1$)、 $c_w = 3.3 R_L + 0.67$ ($0.1 < R_L \le 0.4$)、 $c_w = 2.0$ ($0.4 < R_L$) と規定される。また、 R_L は繰返し三軸強度比(液状化強度曲線において繰返し回数20回で軸ひずみ両振幅5%に達するときの液 状化強度比)で、標準貫入試験のN値と粒度試験結果を用いて以下のように算定する。

$$\begin{split} R_{\rm L} &= 0.0882 \sqrt{N_a / 1.7} & (N_{\rm a} < 14) \\ R_{\rm L} &= 0.0882 \sqrt{N_a / 1.7} + 1.6 \times 10^{-6} \cdot (N_a - 14)^{4.5} & (14 \le N_{\rm a}) \\ N_{\rm a} &= c_1 \cdot N_1 + c_2 \\ N_1 &= 170N / (\sigma_{vb} ' + 70) \\ c_1 &= \begin{cases} 1 & (0\% \le FC < 10\%) \\ (FC + 40) / 50 & (10\% \le FC < 60\%) \\ FC / 20 - 1 & (60\% \le FC) \end{cases} \end{split}$$

 $c_2 = \begin{cases} 0 & (0\% \leq FC < 10\%) \\ (FC - 10) / 18 & (10\% \leq FC) \end{cases}$

ここで、 σ_{vb} 'は標準貫入試験を行ったときの地表面からの深さにおける有効上載圧、Nは標準貫入試験のN値、FCは細粒分含有率、 $c_1 \ge c_2$ は細粒分含有率による補正係数である。測定されたN値は有効上載圧と細粒分含有率による補正を行い、 N_a という形で R_L 算定式に用いられる。一方、地震時に地盤に作用するせん断応力Lは次式によって算定する。

 $L = (1.0 - 0.015x) \cdot k_{hgL} \cdot \sigma_v / \sigma_v'$

ここで、xは地表面からの深さ、 k_{hgL} は液状化の判定に用いる地盤面の設計水平震度、 $\sigma_v \geq \sigma_v'$ は全応力と有効応力による上載圧である。ある深さxにおける液状化安全率 F_L は $F_L=R/L$ と表すことができる。 深さxの地点において地盤の抵抗Rが地震により地盤に作用するせん断応力Lを上回れば $F_L>1.0$ となり液状化は起こらないと判定され、LがRを上回れば $F_L<1.0$ となって液状化が発生すると判定される ことになる。

②"東京ガス"の方法

亀井ら¹は東京およびその周辺の低地地盤で行われた液状化強度試験により, FC が R_Lに及ぼす影響 について検討し,平成8年道路橋示方書・同解説の液状化判定式を基に液状化強度推定式を作成してい る。この手法は中央防災会議の南海トラフ巨大地震の被害想定においても採用されており²⁾,液状化強 度 R_Lは以下のように算定される。

 $R_{\rm L} = 0.0882 \sqrt{N_a / 1.7} \qquad (N_{\rm a} < 14)$ $R_{\rm L} = 0.0882 \sqrt{N_a / 1.7} + 1.6 \times 10^{-6} \cdot (N_a - 14)^{4.5} \qquad (14 \le N_{\rm a})$ $N_{\rm a} = N_1 + \Delta N$ $\Delta N = \begin{cases} 0 \qquad (0\% \le FC < 8\%) \\ 20.769 \log_{10}(FC) - 18 \qquad (8\% \le FC < 40\%) \\ 15.27 \qquad (40\% \le FC) \end{cases}$ $N_1 = 170 N / (\sigma_{vb} ' + 70)$

 $R_L \geq N_1$ の算定は現行の"H24 道示"と同じであるが、補正 N 値 (N_a)の算定において、細粒分の影響 を補正する N 値 (ΔN)を用いている。液状化判定を行う必要がある土層の条件および地震時に地盤に 作用するせん断応力 L は"旧道示"と同じであり、液状化安全率は $F_L = R/L$ で規定される。

③"H29 道示"の方法

"新道示"では、東北地方太平洋沖地震における事例分析の結果に基づき、液状化判定法の合理化の必要性が指摘されたことを受けて、繰返し三軸強度比 *R*L の算定式の見直しが行われた。これは、数多くの室内試験データの分析結果に基づき、*N* 値が小さく細粒分を多く含む土層の *R*L がより合理的に評価されるように改善されたものである。繰返し三軸強度比 *R*L は *N* 値と粒度試験結果を用いて以下のように算定される。

$$\begin{split} R_{\rm L} &= 0.0882 \sqrt{(0.85N_a + 2.1)/1.7} & (N_{\rm a} < 14) \\ R_{\rm L} &= 0.0882 \sqrt{N_a/1.7} + 1.6 \times 10^{-6} \cdot (N_a - 14)^{4.5} & (14 \le N_{\rm a}) \\ N_{\rm a} &= c_{FC} (N_1 + 2.47) - 2.47 & (D_{50} < 2 {\rm mm}) \end{split}$$

$$N_{\rm a} = \{1 - 0.36 \log_{10} (D_{50} / 2)\} N_1$$

 $(D_{50} \ge 2 \text{mm})$

 $N_1 = 170 N / (\sigma_{vb}' + 70)$

	1	$(0\% \leq FC < 10\%)$
$c_{FC} = \prec$	(FC + 20) / 30	$(10\% \leq FC < 40\%)$
	(<i>FC</i> -16) /12	$(40\% \leq FC)$

細粒分含有率による補正方法および、14 \leq N_aにおいて R_L の算定式が"H24 道示"とは異なる。一方、動的せん断強度比 R を求める際の c_w 、および地震時せん断応力比 L の算定式は"H24 道示"と同じである。

(2) 対象地盤

対象とした地盤は以下の10地点である。

①大阪市住之江区泉

②大阪市西淀川区中島

③大阪市うめきた

④長野県諏訪市上川

⑤熊本県益城町

⑥兵庫県尼崎市築地

⑦千葉県浦安市高洲

⑧長野県諏訪市豊田

⑨大阪市港区弁天町

⑩茨城県稲敷市浮島

(3) 液状化判定の検討条件

指針ごとの液状化判定結果の比較を行うにあたり、検討条件を以下に示す。

- ・設計地震動: 200gal および 350gal
- ・地震動特性による補正係数: cw=1.0

液状化判定結果の比較は P_L 値で行う。F_L はある深さにおける液状化安全率であり、液状化によって 上部構造物や地中構造物に被害を及ぼす地盤災害としての液状化を評価するために、F_L 値を深さ方向に 積分することによって得られる液状化指標 P_L 値が用いられる。

$$P_L = \int_0^{20} F \cdot W (x) dz$$

ここで、Fは F_L <0の時の1- F_L 、w(x)は重み関数であり、地表面からの深さxを関数として、w(x)=1-0.015xと規定される。液状化対象層厚を20mとして深さ方向に積分した値を P_L としており、 P_L 値が大きいほど液状化被害が発生する可能性が高いことを示している。

(4) 液状化強度の比較

図-3.2.34~3.2.43 に対象地盤の地盤性状および各指針による液状化強度と繰返し三軸試験,繰返し ねじり試験による液状化強度比を示す。図-3.2.34の大阪市住之江区泉では,"東京ガス"による液状化 強度比が試験結果と概ね一致していることに対して,"H24道示","H29新道示"による液状化強度比は, 細粒分含有率 FC の大きい範囲において,試験結果との差が大きく,特に"H29道示"による液状化強度 比は試験結果と比べて非常に大きな値を示している。これは FC による補正方法の違いによると考えら れる。この地層は FC が大きく塑性指数 I_P が小さい低塑性シルトであり,このような地盤では道路橋示 方書による液状化強度比が試験結果よりも過大な値を示す可能性が考えられる。

その他の地点においても、N 値が比較的大きく、FC が大きい範囲では試験結果よりも計算値の方が 大きな液状化強度比を示す傾向が見られたが、それ以外の範囲では試験結果と計算値に大きな差は見ら れなかった。また、指針による液状化強度比は全体的に、"H24 道示"が最も小さく、次に"H29 道示"、"東 京ガス"の順であったが、前述したN値が比較的大きく、FC が大きい範囲を除くと、大きな差は見られ なかった。

図-3.2.34 地盤性状および各指針による液状化強度(大阪市住之江区泉)

図-3.2.36 地盤性状および各指針による液状化強度(大阪市うめきた)

図-3.2.38 地盤性状および各指針による液状化強度(熊本県益城町)

図-3.2.40 地盤性状および各指針による液状化強度(千葉県浦安市高洲)

図-3.2.42 地盤性状および各指針による液状化強度(大阪市港区弁天町)

図-3.2.43 地盤性状および各指針による液状化強度(茨城県稲敷市浮島)

(5) 液状化判定結果の比較

表-3.2.2に指針ごとの P_L値を示す。また、液状化の恐れのある層のほぼ全てで液状化試験を実施した地点においては、液状化強度比を繰返し三軸試験結果とした場合の P_L値を合わせて示す。**表**-3.2.2 より、大阪市住之江区泉の加速度 350gal を除いて、P_L値の大小は小さい順に"東京ガス"、"H29 道示"、 "H24 道示"であったが、指針による大きな差はなく、液状化強度比を繰返し三軸試験結果とした場合と比べても大きな差はなかった。大阪市住之江区泉の加速度 350gal の場合、新道示による P_L値は他指針および液状化強度比を繰返し三軸試験結果とした場合と比べて小さな値となっている。これは、前述した低塑性シルト質砂層の影響と考えられるが、"H24 道示"では液状化の危険度が高いとされていたにも関わらず、"H29 道示"では液状化の危険度が低いと判断されることになり、このような地盤では実設計において注意が必要と考えられる。

対象地盤	加速度	加速度 H24 道示 東京ガス		H29 道示	三軸試験 結果	
大阪市	200gal	6.2	1.6	2.6	3.8	
住之江区泉	350gal	21.5	19.9	7.3	19.1	
大阪市	200gal	1.4	0.4	0.9	—	
西淀川区中島	350gal	7.5	4.4	5.3	_	
大阪市	200gal	1.3	0.8	0.8	3.3	
うめきた	350gal	14.6	11.0	12.3	17.2	
長野県諏訪市	200gal	12.2	4.1	9.2	—	
上川	350gal	25.6	19.0	22.2	_	
熊本県	200gal	13.6	5.8	10.2	—	
益城町	350gal	25.3	19.9	20.7	_	
兵庫県尼崎市	200gal	7.8	2.1	5.2	1.6	
築地	350gal	21.9	15.8	18.7	13.6	
千葉県浦安市	200gal	23.0	9.1	13.3		
高洲	350gal	41.0	32.0	34.6	_	
長野県諏訪市	200gal	13.2	6.5	10.2		
豊田	350gal	29.6	25.3	26.0	_	
大阪市港区 弁天町	200gal	14.9	2.4	7.0	—	
	350gal	29.6	20.6	21.5	—	
茨城県稲敷市	200gal	8.5	1.9	4.9		
浮島	350gal	34.0	25.2	31.5		

表-3.2.2 指針ごとの PL値

(6) まとめ

- ・対象とした 10 地点において液状化試験結果と"H24 道示","東京ガス","H29 道示"で求めた液状化 強度比を比較した結果,N 値が比較的大きく,FC が大きい範囲では試験結果よりも計算値の方が 大きな液状化強度比を示す傾向が見られたが,その以外の範囲では試験結果と計算値に大きな差は 見られなかった。
- ・大阪市住之江区泉では,"H24 道示","H29 新道示"による液状化強度比は,細粒分含有率 FC の大きい範囲において,試験結果との差が大きく,特に"H29 道示"による液状化強度比は試験結果と比べて非常に大きな値を示している。この地層は FC が大きく塑性指数 I_P が小さい低塑性シルトであり,このような地盤では道路橋示方書による液状化強度比が試験結果よりも過大な値を示す可能性が考えられる。
- ・指針ごとの PL 値を比較した結果,大阪市住之江区泉の加速度 350gal を除いて,小さい順に"東京ガス", "H29 道示", "H24 道示"であったが,指針による大きな差はなく,液状化強度比を繰返し三軸 試験結果とした場合と比べても大きな差は無かった。
- ・大阪市住之江区泉の加速度 350gal の場合, "H29 道示"による PL 値は他指針および液状化強度比を 繰返し三軸試験結果とした場合と比べて小さな値となっている。これは,低塑性シルト質砂層の影響と考えられるが, "H24 道示"では液状化の危険度が高いとされていたにも関わらず, "H29 道示" では液状化の危険度が低いと判断されることになり,このような地盤では実設計において注意が必要と考えられる。

【参考文献】

- 1) 亀井祐聡,森本巌,安田進,清水善久,小金丸健一,石田栄介:東京低地における沖積砂質土の粒 度特性と細粒分が液状化強度に及ぼす影響,地盤工学会論文報告集, Vol.42 No.4, pp.101~110,地 盤工学会, 2002.
- 2) 永井久徳,大島昭彦,岡二三生,日置和昭,甲斐誠士,佐川厚志,平井孝治,深井晴夫,河崎和文: 液状化試験と各指針による液状化強度の比較,Kansai Geo-Symposium2015, 7-1, 2015.

3.3 動的変形特性のモデル化

表層の地震動の評価においては、震源モデル、破壊過程および表層モデルの設定が重要である。表層 モデルの設定では、浅層地盤の土層構成、せん断波速度(V_s)および地盤の動的変形特性を適切にモデ ル化することが必要となる。そこで、関西圏において調査された動的変形試験を収集し、関西圏の地盤 において適切な動的変形特性のモデル化を行った。

3.3.1 動的変形試験結果の収集とDB化

(1) 動的変形試験結果の収集

関西圏において調査された動的変形試験結果を収集した。表-3.3.1に収集した機関と収集数を示す。 なお、収集数はボーリング本数である。図-3.3.1に動的変形試験が実施されたボーリング位置を示す。

機、関	ボーリング本数			
大阪府西大阪治水事務所	89本			
大阪府寝屋川水系改修工営所				
大阪府鳳土木事務所	11 4			
関西圏地盤情報データベース1)	96本			

表-3.3.1 収集した機関と収集数

図-3.3.1 動的変形試験を実施したボーリング位置

(2) 動的変形試験結果の DB 化

大阪府より収集した動的変形試験は、紙資料であったのでデジタル化を行い、試験結果情報を抽出できるようにデータベース化を行った。図-3.3.2に動的変形試験結果を整理した一例を示す。

771	(ル ホーム	挿入 ペー	ジ レイアウト	数式 データ	校閲 🛃	示 Acroba	t				۵	() — f	23
		改ページ プレビュー	V 1-5-	- 図数式パー	QA		唱家	「しいウィンドウを	K 🖃 🔟				
		ユーザー設定のビ	1-	1 20-20 V	1 100			备列	at at			2	
標準	レイアウト 国	全画面表示	☑ 枠線	図 見出し	Z-L 1009	6 選択範囲に合われた が大 バタイ	かせて 一	ハンドウ枠の固定	- 🔲 🖓	作業状態の	ウインドウの tTIN誌ラッ	770	
		表示		表示		ゴムノノキョーコ	. gas r		- <u>-</u>	WIT	SJEX.	マクロ	
	M1 0	·• (n	fx							<u>.</u>			V
1	Δ	в	0	D	F	F	G	н	I	L J	K		
1	DT-test		原本No			1	<u> </u>		-		の枠は未入	カでものк	T
2	REPコード	Q526	報告書名								の枠はいずれ	いかを入力	
3	BORIT	X685	孔名					1	2	3	4	5	
4	地盤高	OP	3.30	m	10.0		2	TP	OP	KP	CDL	EL	_
5	SAMPコート 試明は全取すけま	18_1 p#1:#7411=1	深度GL-m	7.50	~	8.85	0	取り曲キール	DETTYPY	SHE IN /LU-	077	口 `市公共	
7	試彩而指能	らり ノト/トリノ/	V				2	Tシンワオール M 提択	レナニリノ	85 ノドノドウノ	X Z D(th	F /##6	-
8	供試体作成方	エトリミング法					1	エトリミング法	S自F法	C縮固め法	メその他		-
9	土質名称コート	S-CsG	名称	粘性土礫まじり	砂				and a straight date				
10	供試体条件(F	E高さH ₀ cm	9.990	外径Do cm	4.940								
11	〃 (圧密後)	間隙比 ec	0.626		kgf/cm ²	kN/m ²							
12	試験条件	σ'ac kgf/cm ²	1.194			117.0	軸方向圧密	応力(有効応;	ታ)				
13	"	o'rc kgf/cm ²	1.194			117.0	側方向圧密	応力(〃)	*等方圧密の)時 o'ac=	σ'rc		
14	"	Ub kgf/cm ²	2.041			200.0	背圧				(MN/m^2)	54.0	0_
15	載荷条件	載荷波形	S正弦波				1	S正弦波	工三角波		(kgf/cm ²)		8
16		载荷唐波数Hz	0.10								Ga kgf/cm ²	551.5	5
17		排水条件	∪非排水				2	D 排水	し 非排水		ポアソン比	0.50	
		片振幅ひずみ	等価ヤング率	履歴減衰率	片振幅ひずみ	せん断ひずみ		17.05	せん断				
	載荷段階	(軸ひずみ度)	(変形係数Ed)	(減衰定数)	(軸ひずみ度)		Eeq	Eeq	剛性率 G	G⇒Eeq	γ	G	18
18		(ɛa)SA %	Eeq kgf/cm ²	h %	(sa)SA %	γ%	kgf/cm ²	MN/m ²	kgf/cm ²		%	kgf/cm ²	2
19	【5サイクル目】												_
20	1	1.27E-03	1619.0	1.6	1.27E-03			158.7			1.91E-03	539.7	-
21	2	2.02E-03	1608.4	1.3	2.02E-03			157.0			3.03E-03	530.1	-
23	4	5.38E-03	1550.7	23	5.38E-03			152.0			4.00E-03	516.9	-
24	5	8.40E-03	1489.4	3.1	8.40E-03			146.0			1.26E-02	496.5	-
25	6	1.31E-02	1413.8	4.0	1.31E-02			138.6			1.97E-02	471.3	
26	7	2.06E-02	1300.2	5.4	2.06E-02			127.4			3.09E-02	433.4	
27	8	3.38E-02	1131.6	7.4	3.38E-02			110.9			5.07E-02	377.2	-
28	9	5.29E-02	959.8	9.6	5.29E-02			94.1			7.94E-02	319.9	
29	10	7.20E-02	856.6	11.0	7.20E-02			84.0			1.08E-01	285.5	
30	10	1.33E-01	541.5	13.8	1.33E-01			62.9 52.0			2.00E-01	213.8	
32	12	3.59E-01	349.1	17.9	3.59E-01			33.4			5.39E-01	1135	
33	14	0.000 01		1.2	5.000 01			00.7				110.0	
34	15												
35	16												
36	17												
37	18	1											
38	[10サイクルE		1010.0		4 075 40		0.0	150.1			1.045.00	500.0	
39	0	1.2/E-03	1615.4	1.8	1.27E-03			158.4			1.91E-03	538.9 590 F	
40	2	3.30E-03	1574.8	1.3	3.30E-03			158.3			4.95E-03	524 Q	
42	4	5.40E-03	1543.9	2.0	5.40E-03			151.3			8.10E-03	514.6	
43	5	8.47E-03	1477.3	2.6	8.47E-03			144.8			1.27E-02	492.4	
44	6	1.32E-02	1398.5	3.6	1.32E-02			137.1			1.98E-02	466.2	
45	7	2.10E-02	1273.6	4.9	2.10E-02			124.8			3.15E-02	424.5	v
14 4	M 151	1T <u>1 /1D1 /</u> 9	Sheet1 / Sheet	t2 / Sheet3 /	0/		1			10	22	•	
	12								Comp 1	THE PARTY OF THE PARTY OF			100

図-3.3.2 動的変形試験結果を整理した例

大阪地域における動的特性の地域性を検討するために,前述した動的変形試験データベースより動的 試験結果を抽出した。図-3.3.3に大阪地域を西大阪,東大阪に区分し沖積粘土層(Mal3層)と第1洪 積粘土層(Mal2層)の動的変形試験結果の比較を示す。両地区において,動的変形試験結果は顕著な 差が見受けられないため,両地区を合わせた情報からモデル化を行った。

(1)沖積粘土層(Ma13層)

G/G₀~ γ 曲線 (2)第1洪積粘土層(Ma12 層) 図ー3.3.3 西大阪地区と東大阪地区における動的変形試験結果の比較

3.3.2 動的変形試験結果のモデル化

(1) 動的変形試験結果の整理

動的変形試験結果である $G/G_0 \sim_{\gamma}$ 関係および $h \sim_{\gamma}$ 関係は, 既往の研究 $2^{\gamma-4}$ から主に次のようなモデル が示されている。

①H-D モデル²⁾

H-D モデルは,次式で示される。ここでは,各試験結果に最小二乗法を適用し,基準ひずみ yr と最大 減衰定数 h_{max} を求めた。

②R-O モデル 3)

R-O モデルは、次式で示される。ここでは各試験結果より $\gamma_{0.5}$ を求め、その平均値を基準ひずみ γ_r とした。最大減衰定数 h_{max} は、各試験結果の減衰定数の最大値の平均値とした。

$$\gamma_{r}, h_{\max}$$

$$\alpha = 2^{\beta - 1}$$

$$\beta = \frac{2 + \pi h_{\max}}{2 - \pi h_{\max}}$$

$$\gamma = \frac{\tau}{G_0} + \alpha' \left(\frac{\tau}{G_0}\right)^{\beta} = \frac{\tau}{G_0} + \alpha \gamma_r \left(\frac{\tau}{\tau_f}\right)^{\beta} = \frac{\frac{\gamma_r^{\beta - 1}}{G_0} - 1}{\alpha \left(\frac{G}{G_0} - 1\right)^{\beta - 1}}$$

$$h = \frac{2\beta - 1}{\pi \beta + 1} \left(1 - \frac{G}{G_0}\right)$$

③DHP モデル⁴⁾

DHP モデルは,基本的には H-D モデルと同じである。ここでは,各試験結果に最小二乗法を適用し, 基準ひずみ yr とせん断強度比 k を求めた。

(2) 動的変形試験結果のモデル化

今回収集した動的変形試験結果に前述の各モデル化手法を適用して、大阪地域の動的変形特性に適切 なモデルを検討した。なお、動的変形特性のモデル化においては、動的変形試験結果を表層より、4種 の土質に分けて整理した。4種の土質とは、沖積砂層(As層)、沖積粘土層(Ma13層)、第1洪積砂礫 層(Dg1層)および第1洪積粘土層(Ma12層)である。図-3.3.4に層区分ごとに各種モデルを併記し た結果を示す。これらの図より、以下のことが読み取れる。

○大阪地域において実施された動的変形試験結果を基に動的変形特性モデルを適用すると、各土質とも H-D モデルが適切に表現している。

○低ひずみ領域での減衰定数では、いずれのモデルにおいても0に収束する形となり、動的試験結果と の整合性が低い。

以上のことから、大阪地域における動的変形特性モデルは、H-Dモデルを採用することとし、低ひず み領域における減衰定数はある一定の下限値を設けたモデルとした。図-3.3.5 に修正した大阪地域の 動的変形試験特性モデルを示す。

図-3.3.4 動的試験結果と各種モデル

図-3.3.5 大阪地域における動的試験特性モデル(H-D モデル)

【参考文献】

- 1) KG-NET・関西圏地盤情報協議会:関西圏地盤情報データベース
- 2) Hardin,B, O. and Drnevich, V. P.(1972) : Shear modulus and damping in soils : design equations and curves, Proc. Of the American Society of Civil Engineers, Vol.98, No.SM7, pp.667-692
- 3) Jennings, P. C. (1964) : Periodic Response of General Yielding Structure, ASCE, Vol.90, EM2, pp.133-167
- 4) 吉田望(2015): 二重双曲線モデルの精度評価, 第 50 回地盤工学研究発表会, pp.1745-1746

3.4 一次元地震応答解析と液状化検討

ハザードマップの作成にあたり,検討手法等の妥当性を確認することを目的として,詳細な地盤調査 を実施した,ウメキタサイト,住之江サイトおよび弁天町サイトを対象として,一次元地震応答解析と 液状化検討を実施した。

3.4.1 ウメキタサイト, 住之江サイトにおける一次元地震応答解析

(1) 等価線形解析

地域の地盤特性を踏まえて地震ハザード評価を行うためには、地盤材料の動的変形特性を考慮した地 盤の非線形応答を求める必要がある。一次元の応答特性を評価するためには、簡便な評価手法である等 価線形解析や非線形逐次応答解析という選択肢が考えられ、実務上は目的に応じて使い分けられている のが現状であろう。ここでは、地盤調査が十分に実施されており、詳細な地盤特性が明らかなサイト(2 箇所)について、等価線形解析による結果とその適用限界等について整理する。

a) 対象サイト

詳細な地盤特性が明らかなサイトとしてウメキタサイトと住之江サイトを選定した(図-3.4.1)。い ずれも、詳細なボーリング調査、検層、土質試験が実施されており、解析手法の検討を行うための十分 な情報が得られている。ウメキタサイトの検層データ(図-3.4.2)を参照すると、若干の変動を含み ながら徐々に速度が上昇する傾向にある。深度 105m まで実施されている検層データのうち、S 波速度 の最大値は 520m/s (深度 80m)、P 波速度の最大値は 2040m/s (深度 50m)である。土質分類によれば、 地表から順に表土、Ma13、Dg1、Ma12、Dg2、Ma11、Dg3、Ma10の層順で表れており、S 波速度最大 は Dg3 層、P 波速度最大は Dg2 層に認められる。一方、住之江サイトの検層データ(図-3.4.3)を参 照すると、軟弱な砂質の表土が深度 13m 程まで認められ、深度 22.8m までのS 波速度の最大値は 370m/s、 P 波速度の最大値は 1830m/s であり、共に 22.8m 以深に表れる。土質分類によると、深度 13.3-22.8m の Ma12 層、その下部に Dg2 層が認められており、S 波速度、P 波速度最大は Dg2 層に相当する。

図-3.4.1 対象サイト(ウメキタサイト・住之江サイト)の位置

図-3.4.2 ウメキタサイトの PS 検層結果図

図-3.4.3 住之江サイトの PS 検層結果図

b) 基盤面の検討

地盤の応答解析を行うためには,基盤として設定する土質区分を決定しなければならない。図-3.4.4 に示すように、ウメキタサイト,住之江サイトのいずれも,標準的な大阪平野の堆積構造である粘土と 砂の互層を示唆するものであり,各層での速度コントラストも明瞭ではない。一般的には、Dg1 層や Dg2 層等を工学的基盤とみなすことが多いが、両サイトでは常時微動観測が実施されているため、この 結果により基盤として適切な層の特定を試みた。

常時微動は,自然現象や生活により励起される雑振動であり,微小な振幅ではあるが地盤の振動特性 に関する情報が含まれているとされる。微動アレイ探査による地盤調査事例も数多くあるが,ウメキタ サイト,住之江サイトでは,それぞれ複数の単点微動観測が実施されている。単点微動観測では,水平 動と上下動のスペクトル比である H/V スペクトルにより特徴抽出を試みる方法が一般的である。

H/V スペクトルの解釈にあたっては、古くは地盤の伝達関数とみなすこともあったが、現在では Rayleigh 波による解釈が一般的である。常時微動の成分が主に表面波であり、上下動と水平動の比で定 義されることから、上下動成分を持つ Rayleigh 波が主成分とされる¹⁾。純粋な Rayleigh 波の上下動と水 平動の振幅比は楕円状の粒子軌跡の長径と短径の比、すなわち楕円率に相当するため、Rayleigh 波の基 本モードの楕円率と比較される。実際には、常時微動は Rayleigh 波だけで構成されないため、Rayleigh 波の楕円率の曲線と一致することはないが、そのピーク値を与える周波数は両者で一致することが経験 的に知られている。また、Rayleigh 波楕円率のピーク周波数は SH 波の 1 次元伝達関数のピーク周波数 とほぼ等しいため、結果的に伝達関数のピーク周波数で議論されることも多い。ここで注意すべきは、 いずれも振幅の議論はできず、あくまでピーク周波数の一致の程度を比較するものである。

ウメキタサイトの地盤モデルに対し, Dg1 層, Dg2 層, Dg3 層の上面をそれぞれ基盤面と仮定し, 基 盤面以深はそれぞれの物性をもつ半無限媒質であるモデルを作成した。これらのモデルに対し, 伝達関 数, および Rayleigh 波の基本モードの楕円率をそれぞれ常時微動 H/V スペクトルと比較したものが, 図 -3.4.5 である。H/V スペクトルには 1.4Hz 付近にピーク値が見られるが, 伝達関数, Rayleigh 波の楕 円率ともに, Dg2 層上面を基盤面としたモデルについてピーク周波数が良い一致を示している。このこ とは, 1Hz より高周波数側を論じる場合においては, Dg2 上面を基盤面として取り扱える可能性を示唆 するものである。

同様に,住之江サイトについても同様の検討を行った。22.8m 以深を基盤とし,Rayleigh 波基本モードの楕円率を求めた結果とH/V スペクトルとを比較した結果を図-3.4.6 に示す。H/V スペクトルでは 1.2Hz 付近にピークが見られるが,楕円率の曲線は 1.5Hz 付近にピークが見られる。このことから,もう少し深い層に基盤面を設定すべきかもしれないが,地盤情報が十分でないこと,大きくピーク周波数が外れていないこと,またウメキタサイトでは Dg2 層上面で基盤を定義したことと整合させる意味でも, 22.8m 以深を基盤と仮定することとした。

	Vs (m/s)	Vp (m/s)	密度 (kg/m ³)	下面深 度 (m)	Us (m/s)	Vp (m/s)	密度 (kg/m ³)	下面深度 (m)	
表土↑	180	400	1980	2.1	400	1800	1950	54-9	
*	140	720	1910	5.9	360	1720	1960	57.6	Dg2
	130	1230	1790	10.0	340	1630	1930	58.9	¥
	130	1230	1650	14.0	270	1540	1750	63.4	Î
Ma13	150	1330	1660	16.0	340	1630	1850	66.5	Mall
	200	1400	1760	19.9	310	1570	1780	70.0	
¥	220	1530	1920	23.0	400	1700	1940	74.6	1
Î	240	1610	1890	28.8	450	1850	2040	78.7	1
Del	200	1500	1840	30.3	520	1990	2050	80.5]
Dgi	250	1570	1890	32.8	480	1950	2050	83.8	
\downarrow	270	1690	2070	35.1	450	1890	2050	84.5	Da3
Ma12	240	1560	1810	38.5	430	1800	2000	87.5	
WIGHZ V	220	1530	1800	40.8	480	1850	2000	89.5	
î	300	1670	1920	44.8	430	1780	1980	93.8	1
D-0	280	1630	1820	46.9	320	1540	1720	97.0	1.4-10
Dg2	340	1700	1880	48.5	320	1540	1600	-	
	420	2040	2010	53·5]]

なお、大阪地域の常時微動観測結果は3.5.3を参照されたい。

*	Vs (m/s)	Vp (m/s)	密度 (kg/m ³)	下面深 度 (m)
	270	730	2200	1.0
志 十	150	270	1990	2.0
(砂質土)	150	1360	1890	7.55
	130	1360	1850	9.0
	220	1360	1990	11.4
¥	280	1080	2050	13.3
Mal2	180	1640	1650	19.0
	200	1640	1640	22.8
Dg2? ↑	370	1830	2170	-

図-3.4.4 ウメキタサイト(左)・住之江サイト(右)の地盤モデルと土質区分

図-3.4.5 ウメキタサイトにおける常時微動 H/V スペクトルと 伝達関数(左), Rayleigh 波楕円率(右)との比較結果

図-3.4.6 住之江サイトにおける常時微動 H/V スペクトルと Rayleigh 波楕円率の比較結果

c)動的変形特性と入力波

地盤の動的変形特性には、大阪平野を代表する粘土、砂に対する動的変形特性のモデル²⁾を用いた。 これは R-O モデルが仮定されており、粘性土に対しては基準ひずみ 0.14%、最大減衰率 19%、砂質土に 対しては基準ひずみ 0.06%、最大減衰率 19.5%とするものである。本報告書では新たな試験結果の取り まとめ成果として、H-D モデルの適用性が高いことが示されたが、本検討事例ではその成果を取り込む 前段として、R-O モデルにより検討した。ウメキタサイトに対しては、Mal3 層、Mal2 層について粘性 土のモデルを、Dg1 層について砂質土のモデルを用いた。また表土が粘性土主体であることを踏まえて、 表土を粘性土のモデルにより表している。Dg2 層以深は線形弾性体としている。また住之江サイトに対 しては、表土が砂質土主体であることから、表土を砂質土のモデルで、Mal2 層は粘性土のモデルとし ている。

入力波には、平成 19 年大阪府被害想定による上町断層帯地震 A の工学的基盤波を用いた。当然なが ら想定波であるため、将来発生する地震(地震動)そのものではないが、手法の妥当性を検討する上で、 強い非線形挙動が予想されるような作用を与えることを目的としている。ウメキタサイト、住之江サイ トのそれぞれにおいて想定されている工学的基盤波を b) で評価した基盤面に入力する。

d) 等価線形解析結果の比較

等価線形解析には、広く実務でも用いられている SHAKE の方法³, また SHAKE の欠点を改良した DYNEQ の方法⁴⁾などがある。ある一定の層厚をもつ要素に分割した上で、線形の地盤応答解析を実行 し、各要素で発生するせん断ひずみに応じて動的変形特性モデル(*G*--y, *h*--y モデル)によるせん断剛性, 減衰定数に修正し、これを収束するまで繰り返す方法である。剛性と減衰の評価に用いるせん断ひずみ

(有効ひずみ)の与え方が手法により様々であり、例えば SHAKE の場合には、有効ひずみ yeff を以下のように最大せん断ひずみ ymax に比例するように定義する。

$\gamma_{\rm eff} = \alpha \gamma_{\rm max}$

SHAKE を用いる場合には一般的にαの値として 0.65 が用いられることが多い。

SHAKE の方法にはいくつかの欠点があることが知られており⁵,これを解決した手法として DYNEQ の方法があげられる。この方法には以下の特徴がある。

① 係数 *α* そのものを変数としない

② ゼロクロス法により卓越周波数 fp を定義する

③ 有効ひずみを周波数の関数としてfpとfeを閾値として定義する

この方法の骨子は、低周波数側 (f_p 以下) で有効ひずみと最大ひずみを一致させ、高周波数側 (f_c 以上) で有効ひずみをゼロ、すなわち弾性時の剛性で振る舞うよう仮定するものである。この時のパラメータ として遷移曲線の次数である $m \ge f_c$ があるが、m=2、 $f_c = 10$ Hz とする設定がいくつかの事例で確認され ている。ここでも m=2、 $f_c = 10$ Hz として結果を求めた。

図-3.4.7 はウメキタサイトの結果をまとめたものである。入力加速度(E波)が 0.5G 程度であるの に対し、地表の最大加速度は 0.7G 程度である。最大ひずみは 13m 付近で 2%程度発生しているように Ma13 層で大きく、Dg1 層では 0.5-1.0%程度である。等価 S 波速度はいずれの層も検層データの半分程 度である。地表波形の加速度応答スペクトルによると、固有周期 0.3 秒付近で 20m/s² 程度の加速度応答 が求められており、短周期成分の強い地震動である。また入力と地表波形のスペクトル比として定義し た伝達関数は、線形時(検層モデル)に比べてピーク周期が長周期側にシフトしており、地盤の非線形 化に伴う長周期化が現れている。SHAKE と DYNEQ の方法による結果の相違は顕著でないが、やや DYNEQ は短周期成分が多く含まれた地震動であり、これに伴いひずみがやや大きく評価される傾向に ある。

図-3.4.8 は住之江サイトの結果を示したものである。地表の最大加速度は 0.7G 程度である。最大ひ ずみは 8m 付近で 1%程度発生しており表土(砂質土)で大きい。等価 S 波速度は検層データの 50%~ 75%程度である。地表波形の加速度応答スペクトルによると,固有周期 0.5-2.0 秒で 4.0m/s² 程度の加速 度応答である。伝達関数には、ウメキタサイトと同様に地盤の非線形化に伴う長周期化が現れている。 SHAKE と DYNEQ の方法による結果の相違はウメキタサイトと同様に顕著でなく、やや DYNEQ は短 周期成分に富む地震動であることが特徴である。

図-3.4.7 ウメキタサイトにおける等価線形解析結果

【参考文献】

- Arai, H., and Tokimatsu, K.(2000): Effects of Rayleigh and Love waves on microtremor H/V spectra, Proceedings of the 12th World Conference on Earthquake Engineering, No.2232, pp.1–8.
- 2) KG-NET 関西圏地盤研究会(2007):新関西地盤 大阪平野から大阪湾.
- 3) Schnabel, P. B., Lysmer, J. and Seed, H. B.(1975): SHAKE A computer program for earthquake response analysis of horizontally layered sites, Report No. EERC75-30, University of California, Berkeley.
- Yoshida, N., S. Kobayashi, I. Suetomi, and K. Miura (2002): Equivalent linear method considering frequency dependent characteristics of stiffness and damping, Soil Dynam. Earthq. Eng., Vol.22, pp.205–222.
- 5) 吉田望(2010):地盤の地震応答解析.

(2) 非線形時刻歷解析

一次元地震応答解析について,非線形時刻歴解析の解析方法,解析条件および解析結果を以下に示す。

a)解析方法

「鉄道構造物等設計標準・同解説 耐震設計」¹⁾および「鉄道総研報告 GHE-S モデルによる土の動 的非線形挙動の評価方法」²⁾の地震応答解析(動的解析)の方法を以下に示す。

7.3.3 動的解析による方法

7.3.3.1 一 般

動的解析による方法により表層地盤の挙動を算定する場合は、土の動力学特性および地盤を 適切にモデル化した時刻歴非線形動的解析法によるのがよい。

運動方程式の解法

運動方程式の解法から大別すると、周波数応答解析法(周波数領域における動的解析法)と時刻歴応答 解析法(時間領域における動的解析法)に分けられる。周波数応答解析法では、地盤の非線形性の考慮は 一般に等価線形化法により行われる。等価線形化法とは、地震応答解析を行う全時間の間の平均的な材料 特性を用い、線形系の応答を求めようとする近似解法である。一方、時刻歴応答解析法では、運動方程式 を時々刻々解く方法であり、土の応力 τ~ひずみ γ関係を忠実に追跡しながら、地盤の応答値を算定する ことが可能である。時刻歴非線形動的解析法では、土の応力~ひずみ関係を適切に評価すれば、比較的大 きなひずみ領域まで地盤の地震時挙動を精度よく評価することが可能である。一方、等価線形化法では、 以下のような問題点がある。

- 地震開始から終了まで、同じ剛性(等価剛性)を用いているので、地盤の応答を適切に評価できない可能性がある。
- ② ひずみレベルが 10⁻²を越える範囲では,地盤の実挙動との適合性が悪くなることが多い. 軟弱地盤 のようにひずみが大きくなる地盤では適用が難しい.
- ③ 最大ひずみから有効ひずみに換算するための係数が1より小さいために、ひずみが同じであればせん断応力が大きく評価され、せん断応力が同じであればひずみは小さく評価される.したがって、変位と加速度を同時に満足することは難しい.一般には、加速度は同等もしくは過大に評価し、変位を過小に評価することが多い.

<u>以上のことを勘案すると、小さいひずみから大きいひずみレベルまでの適用性が高い時刻歴非線形動的</u> 解析法を動的解析法として用いるのがよい。
付属資料 7-4 地点依存の動的解析に用いる土の非線形モデル

地盤の時刻歴非線形解析では、繰返し載荷時の土の応力-ひずみ関係が必要となる.土の応力-ひずみ関係 係は、骨格曲線と履歴曲線で構成される.これまでは双曲線モデルやランベルグ・オスグッドモデル (RO モデル)が用いられる場合が多かったが、これらのモデルでは、必ずしも土の変形特性を忠実に表 現できない.それらの問題点を改良したモデルとして GHE-S モデルなどの非線形モデルが適用可能であ り、得られているデータの質や量、要求される精度などを勘案して、適切なモデルを用いるのがよい.本 付属資料では、これらのモデルを用いる場合の各パラメータの設定方法について示す。

4. GHE-S モデルを用いる場合

実際の土のせん断応力~せん断ひずみ関係は, **付属図 7.4.6** のようにひずみレベルが小さい領域では, 紡錘型の形状を描くために, ひずみとともに履歴減衰は大きくなる.しかし, ひずみが大きくなり 1% 程

度を超えると $\tau \sim \gamma$ 関係はスリップ状の形状を示し、履歴減衰は減少する。前述のような既往の土の $\tau \sim \gamma$ 関係に関する構成則の多くは、いずれも紡錘型の履歴形状を有するために、このスリップ状の形状に追従することができないが、このような場合にも適用が可能な土の履歴モデルとして GHE-S モデルが提案⁶⁾ されている。このモデルは、大型せん断土槽の乾燥砂の振動実験によりその妥当性は検証されている、

(1) 骨格曲線

骨格曲線は,修正 GHE モデルと同様に式(12)で表される GHE モデル⁵⁾を用いる.

(2) 履歴法則

履歴法則には、工学的に便利な法則である Masing 則を改良して用いることとした. Masing 則とは、 骨格曲線上の点 A(γ_a , τ_a) で除荷されると、その後の履歴は、骨格曲線を相似比λ倍に拡大した履歴を辿 るというものである. この入を変化させると、どのように履歴則が変化するかを**付属図 7.4.7**に示す. 一 般の $\tau \sim \gamma$ 関係では、原点に関して対称な点 B($-\gamma_a$, $-\tau_a$) で逆方向の骨格曲線に滑らかに接続される必 要性から、 $\lambda=2$ が用いられている. しかし、対称点に戻るためには、B点において、 λ が2でありさえ

一般に、側部境界には、1次元自由地盤と領域端部の間の波動伝播をモデル化する粘性境界やエネルギ 一伝達境界を用いる場合が多い.このうち粘性境界は、周波数領域のみならず、時間領域の解析にも適用 可能であるが、境界に対して斜め方向に入射する地震波については性能が劣る傾向にある.これに対して エネルギー伝達境界は、粘性境界と比べて性能はよいが、周波数領域の解析にしか適用できず、土の非線 形を等価線形化法でしか評価できない欠点を有している.また、入力地震動が鉛直進行せん断波の場合

は、側方境界として水平ローラーを用いることもできる が、これは物理的には境界位置に対して線または面対称の 系を解いていることとなるため、モデル化領域はエネルギ 一伝達境界や粘性境界を用いる場合よりも広く設定する必 要がある.その他、様々な処理方法が提案されているが、 目的に応じて十分注意して選択する必要がある.

下端境界には,解説図7.3.3に示すように解析範囲下端 と解放基盤とをつなぐダッシュポット(粘性境界)を設け て半無限地盤の影響をモデル化するのがよい.なお,「6 章 設計地震動」で設定した設計地震動(波形)は,解放 基盤面で定義された地震動である.したがって,表層地盤 の動的解析を行うには,この設計地震動を解放基盤複合波 (2 E 波: E は入射波)として地盤モデルに入力する必要 がある.

b)解析条件

各解析箇所の解析条件を表-3.4.1, 図-3.4.9 および表-3.4.2, 図-3.4.10 に示す。入力加速度波 形については、上町断層帯地震A(H19大阪府想定波) EW 成分を用いた。

表-3.4.1 ウメキタにおける解析条件

図-3.4.9 ウメキタにおける入力加速度波形

表-3.4.2 住之江における解析条件

大阪市住	主之江泉(伯	主之江下	水処理場,	2014年	6月調	査)	-								お歌作な	- 47 HG			
124/16	Inqueur_JR	6				訳し取扱わり用	南海197波形用	Set alls Pla					2010/06/06/07 2 100		地融合省	7月半1/1	Table State and state		
(死年(m)	入力テーク			1.99	Mater	NallfE/E	取現相未 V=0(m/2)	成人にの制定	VO.	DE0 (mm)	E. (0/)	#F-L-/5/023	款追/放形/用	南南)77点形用	人力データ	基準のテル	派表定数	111 101	1
1.0	2.05	20	21 21	1. Pl	20	971 4419	150	1 tota	0.5	0.074	FC(76)	12.2	N结地完	NATHON	\$2 AT	0.0014	0.1000	100/T1	٦°
2.3	2.00	10	20	形が出土	12	155 6811	150	オス	0.5	0.101	42 6	14.5	Nater	Nathr	RbD+50	0.00014	0.1950	701111	÷.
2.0	3.05	19	19	\$1.4t +	5	170 0076	150	1 721.3	0.6	0.048	63.0	17.7	N信推定	N信地定	业+	0.0014	0.1900		
3.3	3.55	18	19	就性+	4	158 7401	150	Litely	0.6	0.040	59.4	16.1	Nathr	N值推定	彩土	0.0014	0 1900	彩社+	1
3.8	4.05	18	19	砂雪十	4	107 9433	150	Litera	0.5	0.078	49 1	17.2	N信推定	N值推定	#0D+50	0.0006	0.1950	税質+	÷.,
4.3	4.55	18	19	验性十	4	158 7401	150	1.7000	0.6	0.058	56.8	20.6	N信推定	N信推定	彩土	0.0014	0.1900	影性十	- 1
4.8	5.05	18	19	影性十	5	170, 9976	150	Liters	0.6	0.057	58.9	17.7	N值推定	N值推定	影十	0.0014	0.1900	影性十	1
5.3	5, 55	18	19	影性十	8	200	150	Liten	0.5	0,059	61.2	16.0	N值推定	N值推定	粘土	0.0014	0.1900	影性十	1
5.8	6,05	18	19	粘性土	5	176.0298	150	Lten	0.6	0.042	84.0	17.2	N值推定	N值推定	粘土	0.0014	0,1900	粘性土	-11
6.3	6, 55	18	19	粘性土	6	181.7121	150	したい	0.6	0,033	89.3	19.4	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	- i
6.8	7.05	18	19	粘性土	5	170.9976	150	したい	0.6	0.034	89.1	18.3	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	- i
7.3	7.55	18	19	粘性土	8	200	150	Lten	0.5	0.034	90.7	16.4	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	- i
7,8	8.05	18	19	粘性土	5	170.9976	130	する	0.6	0.032	92.6	13.9	N值推定	款 赖结果7-2	粘土	0.0030	0, 1950	粘性士	h
8.3	8.55	18	19	粘性土	4	158, 7401	130	しない	0.6	0.027	93.0	16.6	N值推定	N值推定	粘土	0.0014	0.1900	粘性士	: i
8.8	9.05	18	19	粘性土	0	100	130	しない	0.8	0.034	73.9	18.9	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	: i
9.3	9.55	18	19	砂質土	4	107.9433	220	しない	0.6	0.078	49.3	16.7	N值推定	N值推定	粘土	0.0030	0.1950	粘性土	<u>i</u>
9.8	10.05	18	19	砂質土	4	107.9433	220	する	0.5	0.350	14.8	7.3	N值推定	武教信果Ga-5	砂Dr50	0.0006	0.1950	砂質土	h
10.3	10.55	18	19	粘性土	8	200	220	したい	0.5	0.095	56.2	18.8	N值推定	N值推定	粘土	0.0014	0.1900	1 粘性土	_ i
10.8	11.05	16	17	粘性土	10	215.4435	220	しない	0.5	0.036	74.1	21.0	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	<u>1</u> 1
11.3	11.55	16	17	粘性土	10	215.4435	220	したい	0.5	0.043	65.8	15.4	N值推定	N值推定	粘土	0.0014	0.1900	制粘性土	- i
11.8	12.05	19	20	砂質土	31	213.6139	280	する	0.4	0.383	11.4	5.1	N值推定	N值推定	砂Dr50	0.0006	0.1950	砂質土	h
12.3	12.55	19	20	砂質土	31	213.6139	280	する	0.4	0,510	10.3	5.3	N值推定	N值推定	砂Dr50	0.0006	0.1950	砂質土	: h
12.8	13.05	19	20	砂質土	22	190. 5387	280	する	0, 5	0.284	31.6	8.2	N值推定	N值推定	砂Dr50	0,0006	0.1950	砂質土	h
13.3	13, 55	19	- 20	砂質土	17	174.8471	280	する	0.5	1.261	49.9	9.8	N值推定	N值推定	初Dr50	0,0006	0.1950	砂質土	h
13.8	14.05	16	17	粘性土	4	158, 7401	180	Lich	0.6		100.0	35.3	N值推定	N值推定	粘土	0.0014	0.1900	粘性士	-1
14.3	14.55	16	17	粘性土	3	144.225	180	Lich	0.7		100.0	38.6	N值推进	N值把定	粘土	0.0014	0.1900	和作生士	43
14.8	15.05	16	17	村住土工 小小小小	0	170.9976	180	Light	0.6		100.0	39.4	N個用在	N限用在	粘工	0.0014	0.1900	村田王工	-1
15.3	15.55	10	17	TOTE T	4	138, 7401	180	LICV	0.0		100.0	40.4	N個把理	NIR TEAL	お工	0.0014	0.1900	本日生工	43
10.0	16.05	10	17	10111 L	0	144, 223	180	1 7213	0.7		100.0	40.5	いはお社会会	NET HE CO	20 L	0.0014	0.1900	*****	e î
16.9	10.00	10	17	新加加土工 (来たがた 十)	3	144.220	180	Litera	0.1	-	09.2	31.4	N価加定	N植地完	松工	0.0014	0.1900	来归代生土	-1
17.3	17.55	16	17	2日11111	4	158 7401	180	1 tota	0.6		08 3	50.9	N街地完	N植地馆	**++	0.0014	0.1900	*1011年1	11
17.8	18.05	16	17	彩烛十	4	158 7401	180	1 7210	0.6		99.9	55.7	N信推定	N植地馆	彩土	0.0014	0.1900	彩社+	11
18.3	18.55	16	17	影性十	3	144, 225	180	Liter	0.7		98.1	53.3	N值推定	N值推定	影十	0.0014	0.1900	影性+	1
18.8	19.05	16	17	影性十	3	144 225	180	Liters	0.7		98.7	57.6	N信推定	Ninthis	影士	0.0014	0.1900	影性十	20
19.3	19.55	16	17	彩件十	4	158,7401	200	Lten	0.6		96.8	55.5	N值推定	N值推定	粘土	0.0014	0.1900	影性十	11
19.8	20.05	16	17	彩性十	4	158, 7401	200	Lten	0.6		97.3	59.6	N值推定	N值推定	粘土	0.0014	0.1900	彩性十	1
20.3	20, 55	16	17	粘性十	5	170, 9976	200	Lten	0.6		97.0	60.1	N值推定	N值推定	粘土	0.0014	0, 1900	彩性+	1
20.8	21.05	16	17	粘性土	4	158,7401	200	したい	0.6		96.0	62.9	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	- i
21.3	21.55	16	17	粘性土	6	181.7121	200	したい	0.6		95.8	66.9	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	- 1
21.8	22.05	16	17	粘性十	6	181.7121	200	したい	0.6		89.1	58.0	N值推定	N值推定	粘土	0.0014	0.1900	粘性土	-li
22.3	22.55	16	17	粘性土	7	191.2931	200	Lter	0.6		84.0	51.6	N值推定	N值推定	粘土	0.0014	0.1900	粘性士	i
22.8	23.05	20	21	砂質土	8	136	200	しない	0.5		38.7	15.1	N值推定	N值推定	砂Dr50	0,0006	0.1950	砂質土	h
23.3	23.55	20	21	砂質土	11	151.2306	370	しない	0.5		40.9	13.9	N值推定	N值推定	砂Dr50	0.0006	0.1950	砂質土	h
23.8	24.05	20	21	砂質土	31	213, 6139	370	しない	0.4		37.9	12.9	N值推定	N值推定	砂Dr50	0,0006	0.1950	砂質土	h
24.3	24.55	20	21	砂質土	95	400	370	しない	0.3		9.6	3,2	N值推定	N值推定	EbDr80	0.0006	0. 1950	砂質土	h
24 8						V=0<21+	100km/# 4	1-											

図-3.4.10 住之江における入力加速度波形

c)解析結果

ウメキタの解析結果を図-3.4.11 に示す。ウメキタにおいては, GL-13m 付近で 6.1%, および GL-30m 付近で 21.9%のせん断ひずみのピークが確認された。

最大応答値深度分布

うめきたNa.1 (時刻歴非線形解析GHE-S) UMT33_503492-hyb. EW

地層	深	絶	対加速	变	相対	速度		相対変位	立		せん断応	カ	せん	し断ひずみ	t	せん断波	速度
奋	度		(GAL)		(cm/s	sec)		(cm)			(kN/m ²)			(%)		(m/sec)
7	(m)	0	1000	2000	0 10	0 200	0	100	200	0	100	200	0	20 4	0 0	200	400
地表	0.0	9	_	218		141		9	117				-				
1	2.10			217		141		0	117	L		3		0.0			180
2	4.00			213		140			117			10		0.0			140
3	5.90			217		140		Ţ	117			16		<mark>0</mark> . 1			140
4	8.00			206		138		Ĭ	117			22		0. 2	1		130
5	10.00			208		136			115			28		0.6			130
6	12.00			244		129		Ĩ	110			33		2.8			130
7	14.00			299		116		1	98			37	17	6. 1			130
8	16.00			246		111		Ĩ	93			43		2.4			150
9	18.00			237		111		Ĩ	93			49		0.2	1		200
10	19.90			231		110		J	92			54		0. 2		1	200
11	23.00	- 0		215		110		φ	92			61		0. 2			220
												64		4. 5			240
12	28.80	_		325		91		6	66								
13	30.30			471		78	ø		34		4	46		21.9			200
14	32. 80			423		63			18			71		6.6			250
15	35. 10	_		475		49	Į		12			85		3. 0			270
16	38. 50			519		42			9			103		0.9			240
17	40.80			867		0	ſ		0			107		3.8			220
基盤	/////	最大值:	0.	867	最大值=	141	最大值	=	117	最大	値 =	107	最大値=	21.9) 最大值	<u>ti</u> =	270

図-3.4.11 ウメキタにおける解析結果

住之江の解析結果を図-3.4.12 に示す。住之江においては,GL-8m 付近で 1.2%,および GL-23m 付 近で 3%のせん断ひずみのピークが確認された。

最大応答値深度分布

大阪市住之江(時刻歷非線形解析GHE-S) UMT33_273372-hyb. EW

図-3.4.12 住之江における解析結果

【参考文献】

1) (公財)鉄道総合技術研究所(2012):鉄道構造物等設計標準·同解説 耐震設計,丸善出版

2) (公社)鉄道総合技術研究所(2011) : GHE-S モデルによる土の動的非線形挙動の評価方法,鉄道総研 報告 2011 年 9 月号,pp.13~18

3.4.2 弁天町サイトにおける一次元地震応答解析と液状化検討

(動的変形試験結果を用いた一次元地震応答解析と液状化検討)

(1) 弁天町地盤の概要

一次元地震応答解析 (SHAKE) は, 2018 年 6 月に実施した弁天町地区 (大阪市港区波除, 図-3.4.13) の地盤調査結果をもとに,モデル地盤を作成して行った。

図-3.4.14 に弁天町の GL0~-50m の土質柱状図,主な土質試験結果(コンシステンシー特性,湿潤密度,粒度含有率,圧密降伏応力 pc)及び地盤調査結果(N値, PS 検層)の深度分布を示す(詳細は第6章の弁天町地盤調査結果を参照)。なお,図(6)のせん断波速度 Vsは Dg2 層上部(GL-49m 付近)で 340m/sであるが,GL-49m 以深の本来の砂礫層であれば Vsはもっと大きいと想定されるので,Dg2 層は工学的基盤と見なすことができる。

図-3.4.13 弁天町の調査地点位置図

図-3.4.14 弁天町の土質柱状図及び地盤調査結果(GL0~-50m)

(2) 地盤モデル及び繰返し変形特性モデル

表-3.4.3 に解析に用いた弁天町の地盤モデルを示す。層番号 60 の Dg2 層の上面を工学的基盤面とし、地震波の入力面とした。工学的基盤以深は線形弾性体と仮定している。単位体積重量はサンプリング試料の測定値を基に設定した。

図-3.4.15 に弁天町地盤調査で採取した乱れの少ない試料を用いて行った変形特性を求めるための繰返し三軸試験の結果を示す。図には図-3.3.5 に示した H-D モデルも併記した。繰返し三軸試験は As 層と Ma13 層で1ケース, Ma12 層で2ケース行った。Dg1 層では繰返し三軸試験は実施していない。図より, H-D モデルは弁天町における繰返し変形特性を概ね再現できていると考えられる。

李函	属悉号	下端 涩度	十哲	単位体積 重量	全応力 σ	有効応力 <i>o</i>	Vp	Vs	本国	属悉号	下端 深度	十酉	単位体積 重量	全応力 σ	有効応力 σ'	Vp	Vs
20/H		GL-(m)	ΤX	(kN/m ³)	(kN/m^2)	(kN/m^2)	(m/s)	(m/s)	20/8		GL-(m)	ΤA	(kN/m ³)	(kN/m^2)	(kN/m^2)	(m/s)	(m/s)
	1	0.30	砂礫	20.6	6.18	6.18	350	140		31	11.83	砂質シルト	16.2	220.69	118.79	1510	140
	2	0.81	砂礫	20.6	16.69	16.69	350	140		32	12.31	砂質シルト	16.2	228.94	122.24	1510	140
	3	0.90	砂礫	20.6	18.54	18.54	350	140		33	13.00	砂質シルト	16.2	240.81	127.21	1510	140
	4	1.25	シルト質砂	17.2	24.56	24.56	820	120		34	13.32	シルト質粘土	16.2	246.31	129.51	1510	140
	5	1.40	砂質シルト	17.2	27.14	27.14	820	120		35	14.33	シルト質粘土	16.2	263.69	136.79	1510	140
	6	1.64	砂質シルト	17.2	31.27	31.27	820	120		36	15.32	シルト質粘土	16.2	280.71	143.91	1510	140
	7	1.90	砂質シルト	17.2	36.00	33.40	820	120		37	16.00	シルト質粘土	16.2	292.41	148.81	1510	140
	8	2.25	シルト	17.2	42.37	36.27	820	120		38	16.33	粘土	16.2	298.09	151.19	1510	140
埋土	9	2.75	シルト	17.2	51.47	40.37	820	120		39	17.31	粘土	16.2	314.94	158.24	1510	140
盛土	10	3.23	シルト	17.2	60.21	44.31	820	120		40	18.32	粘土	16.2	332.31	165.51	1510	140
	11	3.80	シルト	17.2	70.58	48.98	820	120	Mo12	41	19.30	粘土	16.2	349.17	172.57	1510	140
	12	4.43	シルト	17.2	82.05	54.15	820	120	Ivia15	42	20.30	粘土	16.2	366.37	179.77	1510	140
	13	4.75	シルト	17.2	87.87	56.77	820	120		43	21.30	粘土	16.2	383.57	186.97	1510	140
	14	4.80	砂礫	15.2	88.68	57.08	1040	170		44	21.50	粘土	16.2	387.01	188.41	1510	140
	15	5.30	砂礫	15.2	96.78	60.18	1040	170		45	22.33	粘土	16.5	401.54	194.64	1520	160
	16	5.33	シルト	18.1	97.35	60.45	1240	150		46	23.33	粘土	16.5	419.04	202.14	1520	160
	17	5.80	シルト	18.1	106.33	64.73	1240	150		47	24.30	粘土	16.5	436.01	209.41	1520	160
	18	5.85	シルト	18.1	107.29	65.19	1240	150		48	25.00	粘土	16.5	448.26	214.66	1520	160
	19	6.30	シルト混じり砂	18.1	115.88	69.28	1240	150		49	25.80	シルト質粘土	17.4	462.98	221.38	1450	180
	20	6.80	シルト混じり砂	18.1	125.43	73.83	1240	150		50	26.90	砂質シルト	17.4	483.22	230.62	1450	180
	21	7.31	シルト混じり砂	18.1	135.17	78.47	1240	150		51	30.50	シルト質粘土	17.4	549.46	260.86	1450	180
	22	7.81	シルト混じり砂	18.1	144.72	83.02	1240	150		52	31.95	シルト質粘土	17.9	576.87	273.77	1610	220
	23	8.30	シルト混じり砂	18.1	154.08	87.48	1240	150		53	33.80	砂質シルト	17.9	611.83	290.23	1610	220
A - 11	24	8.80	シルト混じり砂	18.1	163.63	92.03	1240	150	As_L	54	34.70	シルト混じり砂	17.9	628.84	298.24	1610	220
As_U	25	9.30	シルト混じり砂	18.1	173.18	96.58	1240	150		55	35.75	砂質シルト	20.4	651.31	310.21	1710	260
	26	9.80	シルト混じり砂	18.1	182.73	101.13	1240	150	D-1	56	37.35	粗砂	20.4	685.55	328.45	1710	260
	27	10.30	シルト混じり砂	18.1	192.28	105.68	1240	150	Dg1	57	40.25	砂礫	21.1	749.64	363.54	2010	340
	28	10.80	シルト混じり砂	18.1	201.83	110.23	1240	150	M-12	58	44.50	粘土	15.7	820.62	392.02	1510	210
	29	11.33	シルト混じり砂	18.1	211.95	115.05	1240	150	ivia12	59	48.70	粘土	17.3	897.48	426.88	1560	250
	30	11.40	シルト混じり砂	18.1	213.29	115.69	1240	150	Dg2	60	_	粗砂·細砂	20.9	_	_	1700	340

表-3.4.3 弁天町の地盤モデル

※地下水位 GL-1.64m (yw=10kN/m³)

図-3.4.15 弁天町における繰返し三軸試験結果

(3) 入力地震波

入力地震波には上町断層帯地震の想定波として、上町断層帯 A を、南海トラフ地震の想定はとして、 南海トラフ地震基本ケース・陸側ケースの合計 3 波を用いる。

図-3.4.16 に弁天町における上町断層地震 A (EW 波)の加速度時刻歴を,図-3.4.17 に弁天町における上町断層地震 A の加速度時刻歴が算出されたメッシュを示す。今回の解析では、内陸直下型の地震動として平成 19 年大阪府地震被害想定¹⁾より上町断層帯地震 A の EW 波 (α_{max} =664gal)を用いた。メッシュは日本測地系²⁾(旧測地系)による 2 分の 1 地域メッシュで、緯度の間隔 15 秒、経度の間隔 22。5秒、一辺の長さがおよそ 500m である³⁾。弁天町の調査地点はこのメッシュの内部に含まれている。

図-3.4.16 弁天町における上町断層地震A(EW波)の加速度時刻歴

図-3.4.17 弁天町における上町断層地震Aの加速度時刻歴が算出されたメッシュ

図-3.4.18 に弁天町における南海トラフ地震(EW 波)の加速度時刻歴を,図-3.4.19 に弁天町におけ る南海トラフ地震の加速度時刻歴が算出されたメッシュを示す。海溝型の地震動として,内閣府南海ト ラフの巨大地震モデル検討会 つにおいて検討された震度分布・浸水域等のデータより,基本ケース(α_{max} =190gal)と陸側ケース(α_{max} =295gal)の EW 波を用いた。この2つの地震動について,南海トラフの 巨大地震による震度分布・津波高について(第一次報告)っでは,前者を「中央防災会議のによる東海地 震,東南海・南海地震の検討結果を参考に設定したもの」,後者を「基本ケースの強震動生成域を,可能 性がある範囲で最も陸域側(プレート境界面の深い側)の場所に設定したもの」としている。メッシュ は世界測地系²⁾(新測地系)による基準地域メッシュ(第3次地域区画)で,緯度の間隔30秒,経度の 間隔45秒,一辺の長さがおよそ1kmである³⁾。弁天町の調査地点はこのメッシュに含まれず,調査地 点からメッシュの中心までの距離は約2kmである。

図-3.4.18 弁天町における南海トラフ地震(EW波)の加速度時刻歴

図-3.4.19 弁天町における南海トラフ地震の加速度時刻歴が算出されたメッシュ

(4) 解析結果

図-3.4.20 に上町断層地震 A を入力した場合の H-D モデルによる非線形解析結果の(1)最大加速度 α_{max} , (2)最大歪 γ_{max} , (3)最大せん断応力 τ_{max} の深度分布, (4)伝達関数の周波数特性, (5)地表面の加速度 時刻歴を示す。参考までに線形解析(*G*/*G*₀=1, *h*=3%)の結果も併記する。

図(1)より、 α_{max} は GL-27m 以深では線形解析と非線形解析 (H-D モデル) で差はないが、GL-27m 以 浅では非線形解析の結果が線形解析の結果を大きく下回り、線形解析の結果の約2分の1程度の加速度 になった。図(2)より、 γ_{max} は非線形解析で最大 2%超となった、一方で、線形解析の γ_{max} は大きくても 0.5%程度となった。図(1)、(2)を見比べると、線形・非線形解析で α_{max} の差が広がり始めた深度と γ_{max} の 差が大きい深度はほぼ一致しているようにも見える。図(3)より、 τ_{max} は深度方向に増加傾向が認められ た。また、非線形解析は線形解析と比べて 4~5 割程度減少することが分かった。図(4)より、伝達関数 の卓越周波数は非線形性により小さくなった(卓越周期が長周期化した)。ピークは周波数 0.53Hz(周 期 1.9 秒)の時で、増幅率は約 2.43 であった。図(5)より、地表面の最大加速度は入力の最大加速度と比 べておよそ 28%減少した。

図-3.4.21 に南海トラフ地震基本ケースを入力した場合の H-D モデルによる非線形解析結果の(1)最 大加速度 α_{max} , (2)最大 α_{max} , (3)最大せん断応力 τ_{max} の深度分布, (4)伝達関数の周波数特性, (5)地表面 の加速度時刻歴を示す。参考までに線形解析 ($G/G_0=1$, h=3%)の結果も併記する。

図(1)より, α_{max}は線形解析と非線形解析 (H-D モデル) では大きな差は認められなかった。図(2)より, 非線形解析の _{max}は最大で線形解析の場合の約2倍程度になったが,それでも0.3%程度を下回る歪であ った。図(3)より, τ_{max}は深度方向に増加傾向が認められた。しかし,上町断層地震Aのケースのように 非線形性によって τ_{max}が大きく減少することはなかった。図(4)より,伝達関数の卓越周波数は非線形性 により小さくなった(卓越周期が長周期化した)が,その程度は上町断層地震Aのケースと比べて小さ かった。ピークは周波数0.84Hz(周期1.19秒)の時で,増幅率は約2.5であった。図(5)より,地表面の

最大加速度は入力の最大加速度と比べておよそ18%増加した。

図-3.4.22 に南海トラフ地震陸側ケースを入力した場合の H-D モデルによる非線形解析結果の(1)最 大加速度 α_{max} , (2)最大 α_{max} , (3)最大せん断応力 τ_{max} の深度分布, (4)伝達関数の周波数特性, (5)地表面 の加速度時刻歴を示す。参考までに線形解析 ($G/G_0=1$, h=3%)の結果も併記する。

図(1)より,非線形解析による α_{max} は深度方向に漸減していく傾向を示している。一方で,線形解析に よる α_{max} は全体的には深度方向に漸減しているが,一部大きくなる所も見られた。図(2)より,非線形解 析の γ_{max} は GL-20m 付近で 2%弱のピークを示した。一方で,線形解析の γ_{max} は全体的に 0.3%程度を下回 った。図(3)より, τ_{max} は深度方向に増加傾向が認められた。しかし,非線形性によって τ_{max} が減少する ことはなかった。ここで,図-3.4.20 の(2), (3)と図-3.4.22 の(2), (3)を比較すると,線形解析の τ_{max} は

3-91

ごくわずかな歪の差であっても、敏感な反応を示すことが分かる。図(4)より、伝達関数の卓越周波数は 非線形性により小さくなった(卓越周期が長周期化した)。ピークは周波数 0.55Hz(周期 1.82 秒)の時 で、増幅率は約 2.4 であった。図(5)より、地表面の最大加速度は入力の最大加速度と比べておよそ 23% 増加した。

(5) 液状化検討

(4)の地震応答解析結果より、弁天町の液状化予測を行った。方法は以下に示す通りである。

1) 液状化判定を行う層を決める。道路橋示方書に従い,沖積土層で以下の条件全てに配当する場合 は液状化判定を行う。ただし,10%粒径 D₁₀はすべて 1mm 以下とした。表-3.4.4 に液状化判定

	平均深度(m)	N値	礫分(%)	砂分 (%)	シルト分(%)	粘土分 (%)	F c (%)	Ip	D 50	判定
	0.30	8	61.1	28.7	10).2	10.2		4.090	不要
	0.81	3	46.0	37.7	16	5.3	16.3		1.517	不要
	1.40	1	6.5	57.0	20.7	15.8	36.5		0.125	不要
	1.90	2	0.0	14.4	56.3	29.3	85.6	24.7	0.015	不要
	2.25	0	0.0	6.0	63.2	30.8	94.0	21.2	0.014	不要
	2.75	0	0.0	9.5	65.9	24.6	90.5	11.8	0.022	要
	3.23	0	0.0	11.4	70.4	18.2	90.5	8.7	0.027	要
	3.80	1	0.0	15.4	62.5	22.1	84.6	11.3	0.026	要
	4.43	1	0.0	40.0	42.0	18.0	60.0	17.2	0.057	不要
	4.80	5	57.4	32.3	10.3		10.3		3.073	要
	5.33	2	0.0	29.2	39.0	31.8	70.8	35.1	0.020	不要
	5.80	4	0.0	43.9	34.4	21.7	56.1	10.4	0.054	要
	6.30	3	0.0	62.4	24.1	13.5	37.6	6.1	0.118	要
	6.80	3	0.0	72.3	15.0	12.7	27.7		0.149	要
	7.31	6	0.0	75.6	12.8	11.6	24.4		0.164	要
	7.81	8	0.0	77.6	14.7	7.7	22.4		0.194	要
	8.30	14	0.7	66.9	20.6	11.8	32.4		0.132	要
	8.80	6	0.0	76.5	13.4	10.1	23.5		0.174	要
	9.30	8	0.6	70.6	17.3	11.5	28.8		0.146	要
	9.80	8	0.0	57.6	29.9	12.5	42.4	8.0	0.095	要
	10.30	6	0.0	32.6	49.5	17.9	67.4	14.4	0.048	要
	10.80	8	0.0	46.8	35.9	17.3	53.2	13.3	0.068	要
	11.33	4	0.0	27.2	49.5	23.3	72.8	17.2	0.041	不要
	11.83	3	0.0	9.7	54.0	36.3	90.3	38.5	0.014	不要
	12.31	3	0.0	2.4	64.2	33.4	97.6	29.3	0.014	不要
	13.32	3	0.0	1.6	59.2	39.2	98.4	35.8	0.009	不要
	14.33	3	0.0	0.0	51.6	48.4	100.0	41.1	0.006	不要
	15.32	3	0.0	1.9	46.4	51.7	98.1	46.4	0.005	不要
	16.33	3	0.0	2.0	42.1	55.9	98.0	52.1	0.003	不要
Ĵ	17.31	3	0.0	1.4	37.4	61.2	98.6	55.4	0.003	不要
1	18.32	3	0.0	1.1	33.8	65.1	98.9	62.9	0.002	不要
	19.30	3	0.0	0.9	33.8	65.3	99.1	60.9	0.002	不要
	20.30	3	0.0	2.2	28.8	69.0	97.8	65.8	0.001	不要

表-3.4.4 液状化判定の必要の判定結果

の必要の判定結果示す。

- •地下水位が地表面から10m以内にあり、かつ地表面から20m以内の深さに存在する飽和土層。
- ・細粒分含有率 Fcが 35%以下の土層又は Fcが 35%を超えても塑性指数 Ipが 15以下の土層。
- 50% 粒径 D₅₀ が 10mm 以下で,かつ,10% 粒径 D₁₀ が 1mm 以下である土層。
- 2) 動的せん断強度比 R は H29 道路橋示方書に従い、次の 2 種類の方法で求める。
 ① 繰返し三軸強度比 RLを簡易法 (H29 道路橋示方書) によって求める方法 (3.2.2(1)③参照)。
 - ②繰返し三軸試験結果 RL20 を直接用いる方法。
- 3) 地震時せん断応力比Lは、次の2種類の方法で求める。
 - ① 地震応答解析による地表面最大加速度 amax を用いて,式(3.4.1)によって求める方法。
 - ② 地震応答解析による深度方向の最大せん断応力 τ_{max} を有効応力 σ で除して求める方法(式 (3.4.2)による)。

$$L = r_d (a_{max}/980) \sigma_v \sigma_v$$

 $r_d = 1.0 - 0.015x$
ここに、 r_d : 地震時せん断応力比の深さ方向の低減係数
 a_{max} : 地震応答解析結果より地表面最大加速度(gal)
 σ_v : 深度xにおける全上載圧(kN/m²)
 σ_v : 深度xにおける有効上載圧(kN/m²)

x: 地表面からの深さ(m)

$$L = \tau_{\max}(x) / \sigma'(x) \tag{3.4.2}$$

 $I = \frac{1}{2} (\alpha / 0.00) = 1 = 1$

- 4) *R*を*L*で除し, 液状化に対する抵抗率 *F*_Lを求める。
- 5) 3.2.2(3) で示した状化指数 PLを求める。PL 値は、地盤のある深さの液状化のしやすさを表す FL とは異なり、地盤の総合的な液状化の激しさを表す指数であることから、中央防災会議や地域防 災計画等の液状化危険度マップ等に用いられる。土地改良施設に対しては、線状構造物における 液状化危険箇所の評価等に活用され、設計時の流動力の算定の際に用いられる。

図-3.4.23 に R と L の深度分布を示す。R は海溝型<直下型となった。これは、 c_w の違いで直下型では $c_w>1$ となるのに対し、海溝型では $c_w=1$ のため、同じ R_L に対して、直下型の R が大きくなるため のである。両者の簡易法の R が GL-8.30m で大きくなったのは図-3.4.14 より、N 値が大きい (N=14) ためである。また、GL-10.30m でも大きくなったのは表-3.4.4 より、細粒分含有率が F_c 大きいためで ある。一方、三軸 R_{L20} を直接求めた R では急激に大きくなるような傾向は見られず、深度方向に概ね一定であった。次に、L については、上町断層地震 A と南海トラフ地震基本ケースでは、 τ_{max}/σ と $r_d(\alpha_{max}/980)\sigma_v/\sigma_v$ が比較的近い値を示す。ただし、両者の L がある深度で逆転しているのは、 τ_{max} の深度 方向の増加の仕方が緩やかになっているためである。南海トラフ地震基本ケースでは解析結果による L が小さいのは、基本ケースの入力地震動が小さく、地表面の最大加速度も約 200gal であるためである。 ー方、南海トラフ地震陸側ケースでは両者の L の分布の傾向も似通っているが、常に τ_{max}/σ の方が $r_d(\alpha_{max}/980)\sigma_v/\sigma_v$ よりもLが大きくなった。

図-3.4.23 に F_Lの深度分布と P_Lの計算結果を示す。 P_Lは南海トラフ地震陸側ケース>上町断層地 震 A>南海トラフ地震基本ケースという関係になった。南海トラフ地震陸側ケースは海溝型地震で、地 表面加速度が 364gal とやや大きかったので、P_Lが大きくなったと考えられる。一方、南海トラフ地震基 本ケースは地表面加速度がレベル 1 程度の小さな揺れであったことから P_Lが小さくなったと考えられ る。上町断層地震 A の L は 3 ケースの中で最大であったが、R も大きかったので、結果的に南海トラフ 地震陸側ケースの P_L が最も大きくなったと考えられる。F_L について、L の求め方の違いによる分布の 差はほとんど認められなかった。R の違いは分布に大きく影響し、F_Lの深度分布は R の深度分布と相似 の傾向を示した。しかし、P_Lに目立った差は認められなかった。液状化の程度については、上町断層地 震 A と南海トラフ地震陸側ケースでは中程度~激しい液状化が予想される。一方で、南海トラフ地震基 本ケースでは小~中程度の液状化が予想される。

図-3.4.23 弁天町の動的せん断強度比 R と地震時せん断応力比 L の深度分布

図-3.4.24 弁天町の液状化に対する抵抗率 FLの深度分布と液状化指数 PLの計算結果

【参考文献】

- 大阪府 (2007): 大阪府地震被害想定(平成 19 年 3 月),
 http://www.pref.osaka.lg.jp/kikikanri/keikaku higaisoutei/chokkagata soutei.html>
- 2) 国土地理院:日本測地系と世界測地系,http://www.gsi.go.jp/LAW/G2000-g2000-h3.html
- 3) 総務省統計局:地域メッシュ統計について, https://www.stat.go.jp/data/mesh/m_tuite.html
- 4) 内閣府:南海トラフの巨大地震モデル検討会, http://www.bousai.go.jp/jishin/nankai/model/index.html
- 5) 内閣府(2015):南海トラフの巨大地震モデル検討会,南海トラフの巨大地震による震度分布・津波 高について(第一次報告)
- 6) 内閣府:中央防災会議, http://www.bousai.go.jp/kaigirep/chuobou/

3.4.3 弁天町サイトにおける一次元地震応答解析と液状化検討

(等価線形解析と時刻歴非線形解析による液状化検討)

(1) 調査位置

2018 年 6 月から弁天町地区(大阪市港区波除, 図-3.4.13 参照)でボーリング調査および各種試験 を実施した。ボーリング調査結果および試験結果は図-3.4.14 に既に示した。

(2) 地盤モデル

地盤モデルを表-3.4.5に示す。層番号 60 の Dg2 層上面を工学的基盤面とし, 地震波の入力面とした。 湿潤密度は密度検層より, V₃は PS 検層より求めた。

		下端	1 100	兴体化在主日	全応力	有効応力	$V_{\rm p}$	V_{s}
地層	層番号	深度	上質	甲位体積重重	σ	σ		
		GL-(m)		(kN/m ³)	(kN/m ²)	(kN/m ²)	(m/s)	(m/s)
	1	0.30	砂礫	20.6	6.18	6.18	350	140
	2	0.81	砂礫	20.6	16.69	16.69	350	140
	3	0.90	砂礫	20.6	18.54	18.54	350	140
	4	1.25	シルト質砂	17.2	24.56	24.56	820	120
	2	1.40	砂質シルト	17.2	27.14	27.14	820	120
	0	1.64	砂質シルト	17.2	31.27	31.27	820	120
	- /	1.90	砂質シルト	18.2	36.00	33.40	820	120
	8	2.25	<u></u>	18.2	42.37	36.27	820	120
埋土•盛土	9	2.75	シルト	18.2	51.47	40.37	820	120
	10	3.23	574F	18.2	60.21	44.31	820	120
	11	3.80	2725	18.2	/0.58	48.98	820	120
	12	4.43	2725	18.2	82.05	54.15	820	120
	13	4.75	7215 1216	18.2	87.87	50.77	820	120
	17	4.80	17/11米 (小)(19)	10.2	80.68	57.08	1040	170
	15	5.30	伊栄	16.2	96.78	60.18	1040	170
	10	5.55		19.1	97.35	60.45	1240	150
	17	5.80	2725	19.1	106.33	64.73	1240	150
	10	5.85		19.1	107.29	65.19	1240	150
	19	6.30	シルト混じり砂	19.1	115.88	69.28	1240	150
	20	6.80	ンルト混しり使	19.1	125.43	73.83	1240	150
	21	/.31	ンルト混しり砂	19.1	135.1/	/8.4/	1240	150
	22	7.81	シルト混しり砂	19.1	144.72	83.02	1240	150
	23	8.50	シルト進しり他	19.1	154.08	87.48	1240	150
As_U	24	0.00	シアレト祖しり相	19.1	103.03	92.05	1240	150
	25	9.30	シルト進しり作	19.1	1/3.18	96.58	1240	150
	20	9.80	シャレンサンション	19.1	182.75	101.15	1240	150
		10.30	シルト進しり収	19.1	192.28	105.68	1240	150
	20	10.80	シルト混しり使	19.1	201.83	110.23	1240	150
	29	11.33	シルト混しり物	19.1	211.95	115.05	1240	150
	21	11.40	ンルトルビリカリ	19.1	213.29	115.69	1240	150
	20	11.85	112日ンルト	17.2	220.69	118.79	1510	140
	32	12.51	砂質ンルト	17.2	228.94	122.24	1510	140
	33	13.00	一般良ンルト	17.2	240.81	127.21	1510	140
	25	13.32	シルト員柏上	17.2	240.51	129.51	1510	140
	36	14.55	シルド貝柏1.	17.2	203.09	130.79	1510	140
	37	15.52	シルト員柏工	17.2	200.71	145.91	1510	140
	38	16.00		17.2	292.41	140.01	1510	140
	39	17.31	10 L. 41 I.	17.2	298.09	158.24	1510	140
	40	17.51	*11上	17.2	222.21	156.24	1510	140
	41	10.32	<u>村口工</u> 来たし・	17.2	240.17	172.57	1510	140
Ma13	42	20.30	*1:土	17.2	366 37	170.77	1510	140
	43	20.30	北上	17.2	383 57	186.07	1510	140
	44	21.50		17.2	387.01	188.41	1510	140
	45	21.50	- 和上	17.2	401 54	194.64	1520	160
	46	22.55		17.5	419.04	202.14	1520	160
	47	23.33	111上	17.5	436.01	202.14	1520	160
	48	21,50	北上	17.5	448.26	202.41	1520	160
	49	25.80	 シルト質粘土	18.4	462.98	214.00	1450	180
	50	26.90	砂質シルト	18.4	483.22	230.62	1450	180
	51	30.50	シルト管粘土	18.4	549.46	260.86	1450	180
	52	31.95	シルト質粘土	18.9	576.87	273 77	1610	220
	53	33.80	砂質シルト	18.2	611.83	290.23	1610	220
As L	54	34 70	シルト混じり砂	18.9	678.84	298.24	1610	220
	55	35.75	砂質シルト	21.4	651 31	310.24	1710	260
	56	37 35	和税	21.4	685 55	378.45	1710	260
Dg1	57	40.25	初期	21.4	749.64	363 54	2010	340
	58	44.50		16.7	820.62	392.02	1510	210
Ma12	59	48.70		10.7	807.49	476.89	1560	250
Da2	60	40.70		210	077.48	420.68	1700	2.30
∪g∠	00		411.11/17月11月2	21.9			1700	540

表-3.4.5 弁天町の地盤モデル

※地下水位 GL-1.64m (γw=10kN/m³)

(3) 繰り返し変形特性

・等価線形解析:建設省土木研究所資料(第1778号「地盤の地震時応答特性の数値解析法」)¹⁾の曲線を適用した。

・時刻歴非線形解析: GHE-S モデルの標準パラメータを適用した。GHE-S モデルの標準パラメータは 鉄道総研が所有する様々な拘束圧や土質条件の20試料(砂質土:5,粘性土:

15)の試験結果から定められたものである。

表-3.4.6のとおりで, *h*_{max}は標準パラメータより設定し, *γ*_rは「新関西地盤-大阪平野から大阪湾-(2007)」²⁾の R-O モデルの値を適用した。

表-3.4.6 時刻歴非線形解析に用いる h_{max},基準ひずみ y_r

動的エデル	h _{max}	基準ひずみァ
到りてノル	%	%
粘性土	19	0.14
砂	21	0.06

(4) 使用ソフト

地震応答解析および液状化判定に使用したソフトは下記のとおりである。

・等価線形解析:Liqueur 富士通 FIP (SHAKE 互換)

・時刻歴非線形解析: Liqueur JR 富士通 FIP (GHE-S モデル)

(5) 入力波形

入力波形は大阪府地震被害想定(平成19年3月)の上町断層帯地震 A³(以下「上町断層地震 A」という)と南海トラフの巨大地震モデル検討会において検討された強震動(加速度)波形⁴⁾(以下「南海トラフ地震」という)を使用した。

① 上町断層地震A

上町断層地震 A は, 図-3.4.25 のメッシュから, 図-3.4.26 に示す最も加速度の大きい東西成分の 波形(UMT34 503071-hvb.EW)を使用した。

図-3.4.25 上町断層地震 A の加速度波形のメッシュ

図-3.4.26 上町断層地震 A の加速度波形

② 南海トラフ地震

南海トラフ地震については、ボーリング位置に近い加速度波形がなかったため、最も近傍の図ー 3.4.27 のメッシュである 5235-0327 の加速度波形を使用した。基本ケースおよび陸側ケースにおいて、 図-3.4.28,図-3.4.29 に示す最も加速度の大きい東西成分の波形(基本ケース:kihon52350327.EW) (陸側ケース:riku52350327.EW)を使用した。

図-3.4.27 南海トラフ地震の加速度波形のメッシュ

図-3.4.28 南海トラフ地震基本ケースの加速度波形

図-3.4.29 南海トラフ地震陸側ケースの加速度波形

(6) 地震応答解析結果

①上町断層地震 A

- ・解析結果を図-3.4.30, 図-3.4.31 に示す。
- ・加速度応答スペクトルのピークは1秒付近であり、等価線形解析と時刻歴非線形解析は概ね一致している。
- ・せん断ひずみは等価線形解析では As_U および Ma12 で大きいが,時刻歴非線形解析では Ma13 も 大きくなっている。

図-3.4.30 上町断層地震 A の加速度応答スペクトル

· 等価線形解析

·時刻歷非線形解析

図-3.4.31 上町断層地震 A の最大応答値深度分布

②南海トラフ地震基本ケース

- ・解析結果を図-3.4.32, 図-3.4.33 に示す。
- ・加速度応答スペクトルのピークは1秒付近であり,等価線形解析と時刻歴非線形解析は概ね一致している。
- ・せん断ひずみは等価線形解析では As_U および Mal2 で大きいが,時刻歴非線形解析では Mal3 で 最も大きくなっている。

図-3.4.32 南海トラフ地震基本ケースの加速度応答スペクトル

· 等価線形解析

·時刻歷非線形解析

弁天町地震応答解析(時刻歴非線形解析) 基本ケースEW52350327

図-3.4.33 南海トラフ地震基本ケースの最大応答値深度分布

③南海トラフ地震基本ケース

- ・解析結果を図-3.4.34, 図-3.4.35 に示す。
- ・加速度応答スペクトルのピークは2秒付近であり概ね一致している。
- ・せん断ひずみは等価線形解析では As_U および Ma12 で大きいが,時刻歴非線形解析では As_U および Ma13 が大きくなっている。

時刻歷非線形解析

図-3.4.34 南海トラフ地震陸側ケースの加速度応答スペクトル

· 等価線形解析

·時刻歷非線形解析

(7) 液状化検討方法

地震応答解析の結果を用いて液状化検討を行った。検討方法は以下のとおりである。 ①平成 29 年度改正道路橋示方書⁵⁾に基づき液状化判定対象層を設定する。

②簡易法(平成 29 年度改正道路橋示方書の方法)および等価線形解析においては、平成 29 年度改正道路橋示方書に基づき N 値から動的せん断強度比 R を求める。時刻歴非線形解析おいては、R を求める際、累積損傷度理論⁶⁾を用いて R の補正を行う(平成 29 年度改正道路橋示方書に基づき N 値からR_Lを求めた後、累積損傷度理論を用いて補正を行う)。

③地震時せん断応力比 *L* は、地表面における最大加速度を用いる場合 ($r_d \cdot k_{hgL} \cdot \sigma_v / \sigma_v' \circ k_{hgL}$ に地表面における最大加速度 $a_{max}(gal)/980$ を代入する) と、最大せん断応力 τ_{max} を有効応力 $\sigma_v' \circ k$ す場合の 2 通りを求めた。なお、時刻歴非線形解析についてはソフトの仕様上、 τ_{max} を $\sigma_v' \circ k$ す場合の 1 通りのみとした。

④R を Lで除して液状化抵抗率 F_L を求める。

⑤液状化指数 PLを求める。

(8) 液状化検討結果

各ケースのR, Lの計算結果を表-3.4.7に示す。

時刻歴非線形解析と等価線形解析のL((Tmax/ov))は概ね同程度である。

H29 道橋示方書の cw と累積損傷度理論による cw を比較すると、上町断層地震 A(L2 直下型)では H29 道橋示方書の方が大きく、南海トラフ地震(L2海溝型)では累積損傷度理論の方が大きい。

簡易法·等価線形解析 ← 雪ォー ________等価線形 時刻歴非線形解析 代表 層厚 (m) H29 H29道示 深度 (m) 累積 累積損傷用 損傷度 R RL 道示 Cw R (Cw*RL) L L τ_{max}/σ_v') $(r_d k_{hgL} \sigma_v / \sigma_v')$ (k_{hg}) $\tau_{\rm max}/\sigma_{\rm v}$ Cw (Cw*RL 0.3 0.3 0.81 0.51 - -_ 0.9 0.09 1.25 0.35 _ -1.4 0.15 1.64 0.24 -0.26 1.9 2.25 0.35 2.75 0.5 0.24 1.48 0.36 0.73 0.36 0.38 1.51 0.37 0.28 3.23 0.48 0.24 1.47 3.8 0.57 0.31 1.68 0.78 3.23 0.35 0.39 1.53 0.37 0.30 0.51 0.42 1.58 0.32 0.48 4.43 0.63 4.75 0.32 _ 4.8 0.05 0.18 1.28 0.24 0.86 0.42 0.45 1.20 0.22 0.38 <u>5.3 0.5 - -</u> <u>5.33 0.03 -</u> -0.47 0.35 1.82 0.63 0.90 0.48 0.47 1.34 0.47 0.40 5.8 0.47 0.33 1.82 5.85 0.05 6.3 0.45 0.21 1.38 6.8 0.5 0.19 1.31 0.29 0.42 0.47 1.27 0.44 0.91 0.27 0.25 0.92 0.42 0.47 1.16 0.22 0.37 0.0 0.10 1.01 7.31 0.51 0.23 1.44 7.81 0.5 0.25 1.49 8.3 0.49 0.61 2.00 8.8 0.5 0.22 1.40 0.33 0.92 0.42 0.48 1.26 0.29 0.40 0.39 0.37 0.92 0.42 0.48 1.37 0.34 2.11 1.22 0.93 0.42 0.48 1.28 0.31 0.93 0.41 0.48 1.22 0.27 0.40 93 0.5 0.26 1.53 0.40 0.93 0.41 0.48 1 4 1 0.37 0 4 4 9.8 0.5 0.20 1.33 10.3 0.5 1.29 2.00 0.44 0.53 0.92 0.48 1.42 0.44 0.40 10.3 2.58 0.92 0.40 0.48 1.28 1.66 10.8 0.5 0.64 2.00 1.28 0.92 0.40 0.48 1.41 0.90 0.47 平均 0.37 1.60 0.64 0.89 0.41 0.46 1.40 0.53 0.40

表-3.4.7 各ケースの R, L

<上町断層地震 A>

<南海トラフ地震基本ケース>

<南海トラフ地震陸側ケース>

				筒	商易法·等価	「線形解析				T AT LT
代表					簡易法	等	西線形	田	F刻歴非線	形解析
深度 (m)	層厚 (m)	RL	H29 道示 Cw	H29道示 R (Cw*RL)	L (k _{hg})	L (τ _{max} /σ _v ')	L (r _d k _{hgL} σ_v / σ_v ')	累積 損傷度 Cw	累積損傷度 R (Cw*RL)	L (τ _{max} /σ _v ')
0.3	0.3	-	-	-	-	-	_	-	-	-
0.81	0.51	_	_	-	_	-	-	-	-	_
0.9	0.09	-	-	-	-	_	-	-	-	-
1.25	0.35	-	-	-	-	_	-	-	-	-
1.4	0.15	-	-	-	-	_	-	-	-	-
1.64	0.24	-	-	-	-	_	-	-	-	-
1.9	0.26	-	-	-	-	-	-	-	-	-
2.25	0.35	-	-	-	-	-	-	-	-	-
2.75	0.5	0.24	1	0.24	0.49	0.19	0.20	1.39	0.34	0.18
3.23	0.48	0.24	1	0.24	0.52	0.20	0.21	1.37	0.33	0.19
3.8	0.57	0.31	1	0.31	0.54	0.21	0.22	1.36	0.42	0.19
4.43	0.63	-	-	-	-		-	-	-	-
4.75	0.32	-	-	-	-		-	-	-	-
4.8	0.05	0.18	1	0.18	0.58	0.25	0.23	0.98	0.18	0.20
5.3	0.5	-	-	-	-		-	-	-	-
5.33	0.03	-	-	-	-	0.00	-	-	-	-
5.8	0.47	0.35	1	0.35	0.60	0.24	0.24	1.09	0.38	0.20
5.85	0.05	-	-	-	-		-	-	-	
6.3	0.45	0.21	1	0.21	0.61	0.25	0.24	1.11	0.24	0.24
6.8	0.5	0.19	1	0.19	0.61	0.25	0.24	0.98	0.19	0.20
7.31	0.51	0.23	1	0.23	0.61	0.25	0.25	0.97	0.22	0.20
7.81	0.5	0.25	1	0.25	0.62	0.25	0.25	1.02	0.25	0.20
8.3	0.49	0.61	1	0.61	0.62	0.25	0.25	1.18	0.72	0.22
8.8	0.5	0.22	1	0.22	0.62	0.25	0.25	0.98	0.22	0.20
9.3	0.5	0.26	1	0.26	0.62	0.25	0.25	1.03	0.27	0.21
9.8	0.5	0.31	1	0.31	0.62	0.25	0.25	1.09	0.34	0.22
10.3	0.5	1.29	1	1.29	0.62	0.25	0.25	1.02	1.32	0.22
10.8	0.5	0.64	1	0.64	0.61	0.25	0.25	1.06	0.67	0.22
平力	b)	0.37	1.00	0.37	0.59	0.22	0.24	1 1 1	0.41	0.20

				簡	「易法·等価	i線形解析				TA AT LC
代表					簡易法	等(西線形	民	F刻歴非稼	#珍月44 AT
深度 (m)	僧厚 (m)	RL	H29 道示 Cw	H29追示 R (Cw*RL)	L (k _{hg})	L (τ _{max} /σ _ν ')	$L (r_d k_{hgL} \sigma_v / \sigma_v)$	累積 損傷度 Cw	累積損傷度 R (Cw*RI)	L (τ _{max} /σ _ν ')
0.3	0.3	-	-	-	-	-	_	_	-	-
0.81	0.51	-	-	-	_	-	_	-	_	-
0.9	0.09	-	_	-	-	-	_	-	-	-
1.25	0.35	-	_	-	-	-	_	-	-	-
1.4	0.15	-	_	-	-	-	_	-	-	-
1.64	0.24	-	_	-	-	-	_	-	-	-
1.9	0.26	-	-	-	-	-	_	-	-	-
2.25	0.35	-	-	-	-	-	_	-	-	-
2.75	0.5	0.24	1	0.24	0.49	0.38	0.40	1.59	0.39	0.35
3.23	0.48	0.24	1	0.24	0.52	0.42	0.43	1.58	0.38	0.37
3.8	0.57	0.31	1	0.31	0.54	0.44	0.45	1.59	0.49	0.39
4.43	0.63	I	-	-	-	-	-	-	-	-
4.75	0.32	-		-	-	-	_	—	-	-
4.8	0.05	0.18	1	0.18	0.58	0.45	0.48	1.14	0.21	0.44
5.3	0.5	-	-	-	-	-	_	—	-	-
5.33	0.03	-	-	-	-	-	-	—	-	-
5.8	0.47	0.35	1	0.35	0.60	0.51	0.50	1.35	0.47	0.47
5.85	0.05	-	-	-	-	-	-	—	-	-
6.3	0.45	0.21	1	0.21	0.61	0.45	0.50	1.24	0.27	0.46
6.8	0.5	0.19	1	0.19	0.61	0.46	0.50	1.24	0.24	0.46
7.31	0.51	0.23	1	0.23	0.61	0.46	0.51	1.28	0.30	0.46
7.81	0.5	0.25	1	0.25	0.62	0.46	0.51	1.36	0.34	0.47
8.3	0.49	0.61	1	0.61	0.62	0.46	0.51	1.71	1.04	0.51
8.8	0.5	0.22	1	0.22	0.62	0.46	0.51	1.21	0.27	0.45
9.3	0.5	0.26	1	0.26	0.62	0.45	0.51	1.36	0.35	0.49
9.8	0.5	0.31	1	0.31	0.62	0.45	0.51	1.39	0.43	0.51
10.3	0.5	1.29	1	1.29	0.62	0.44	0.51	1.27	1.65	0.53
10.8	0.5	0.64	1	0.64	0.61	0.44	0.51	1.37	0.88	0.55
平均	平均		1.00	0.37	0.59	0.45	0.49	1.38	0.51	0.46

各ケースの F_L 値のグラフと P_L 値を**図ー3.4.36** に示す。 等価線形解析による τ_{max}/σ_v 'と $r_d \cdot k_{hgL} \cdot \sigma_v / \sigma_v$ 'の液状化判定の結果は概ね同程度である。 簡易法,等価線形解析,時刻歴非線形解析の順に液状化しやすい。

(9) 考察

(1)等価線形解析と時刻歴非線形解析

一般的な繰返し変形特性を用いて地震応答解析を行った結果,時刻歴非線形解析と等価線形解析のL (*τ*_{max}/*σ*_v))は概ね同程度であることから,両者に大きな違いは無いと考えられる。

②等価線形解析と時刻歴非線形解析による液状化判定

等価線形解析と時刻歴非線形解析による液状化判定結果を比較すると、上町断層地震 A では概ね同程 度の結果であるが、南海トラフ地震のケースでは時刻歴非線形解析が液状化しにくい結果となっている。 これは、南海トラフ地震の波形が衝撃型(レベル 2 タイプII)に近いため、時刻歴非線形解析におい て累積損傷度理論により R が補正され、 cw が 1.0 以上となっていることが考えられる。

③等価線形解析による液状化判定 (τ_{max}/σ_v 'と $r_d \cdot k_{hgL} \cdot \sigma_v/\sigma_v$)

等価線形解析結果を用いて τ_{max}/σ_v により L を求めた場合と、 $r_d \cdot k_{hgL} \cdot \sigma_v/\sigma_v$ により L を求めた場合の液 状化判定を比較し行った結果、両者は同程度であることから、L の算出方法の違いによって液状化判定 結果に大きな違いは無いと考えられる。

④動的変形特性の違いについて

3.4.2 における等価線形解析による液状化検討(繰返し変形特性は動的変形試験結果から求めた H-D モデル)と、本項の等価線形解析による液状化検討(繰返し変形特性は土研式)を比較すると、前者の 方が液状化しやすい傾向にある。これは、土研式よりも動的変形試験結果による H-D モデルの方がせん 断応力 τ が大きくなることから(図-3.4.37)、地震時せん断応力比 *L* が大きくなり液状化しやすいた めである。 τ の違いは繰返し変形特性によるものと考えられる(図-3.4.38、図-3.4.39)。

図-3.4.37 上町断層地震 A の地震応答解析結果の比較

赤線:土研式,黒線:動的変形試験結果から求めた H-D モデル 図-3.4.38 As_U 層最下部(深度 10.8m)における動的変形特性の比較

赤線:土研式,黒線:動的変形試験結果から求めた H-D モデル 図-3.4.39 Ma13 層(深度 20.3m)における動的変形特性の比較

【参考文献】

- 1) 建設省土木研究所(1982):地盤地震時応答特性の数値解析法-SHAKE:DESRA-,土研資料第1778 号
- 2) KG-NET・関西圏地盤研究会新関西地盤(2007):新関西地盤-大阪平野から大阪湾-
- 3) 大阪府 (2007): 大阪府地震被害想定(平成 19 年 3 月),
 http://www.pref.osaka.lg.jp/kikikanri/keikaku higaisoutei/chokkagata soutei.html>
- 4) 内閣府(2015): 南海トラフの巨大地震モデル検討会において検討された震度分布・浸水域等に係るデータ提供について、< http://www.bousai.go.jp/jishin/nankai/model/data_teikyou.html>
- 5) (社)日本道路協会(2017):道路橋示方書·同解説V耐震設計編, 丸善出版
- 6) (公財)鉄道総合技術研究所(2012):鉄道構造物等設計標準・同解説 耐震設計,丸善出版

3.5 揺れやすさマップの構築

3.5.1 大阪・神戸地域の 250m メッシュ浅層地盤モデル

(1) 250m メッシュ浅層地盤モデルの構築方法

関西圏地盤情報データベース(以下,DB)^Dには約65,000本のボーリングデータが登録されている。 このボーリング位置に対して250mメッシュ(4分の1地域メッシュ)を当てはめて各メッシュの平均 的な地盤特性のモデルを作成した。具体的には、図-3.5.1に示す地盤モデル作成システム(地域地盤環 境研究所による)を用いて、大阪地域の250mメッシュ内にDB登録されている複数のボーリングデー タを集約して深度 1m毎に細分し、各細分層において合計層厚が最も大きい土質(優勢土質)とその平 均 N 値を求めた(同時に平均湿潤密度も求めた)。なお、この作業はモデルの空間的な整合性を確認し ながら、データ数の不足や分布の偏りがある場合には、メッシュ周辺のボーリングデータを加えて修正 を行っている。作業後には、各メッシュのモデル地盤として深度 1m刻みの土質区分、平均 N 値、平均 湿潤密度および地盤標高、層厚、孔内水位の値がファイルに保存される。この作業を上から順に沖積層 (上部沖積砂 As_U 層~下部沖積砂層 As_L まで)、沖積粘土 Ma13 層、第1 洪積砂礫 Dg1 層、洪積粘土 Ma12 層に対して行い、各層のモデルを作成した。さらに、Ma13 層、Ma12 層については、既に土質特 性を求めている地点を基に「逆距離加重法」によって250mメッシュごとに補間して求めた土質特性(物 理性質から力学性質までの12 種類)の分布も求めているが、本報告では対象としないので、ここでは 省く。なお、沖積層モデル(As層, Ma13層)は、既に「関西圏地盤情報ライブラリー」にて Web 公 開されている。

図-3.5.1 地盤モデル作成システムによる 250m メッシュごとの Dg1 層のモデル化の例

(2) 沖積砂 As 層の細粒分含有率 F. のモデル化

沖積砂 As 層の液状化予測を行うためには、N値に加えて粒度特性である細粒分含有率 F_cが必要である。しかし、大阪・神戸地域において、粒度試験は一般的に標準貫入試験ほど数多く行われていないため、N値と同様に 250m メッシュ毎にモデル化をすることは難しい。そこで、以下のように 250m メッシュ浅層地盤モデルのN値から細粒分含有率 F_cを推定した。

堆積環境の地域性を考慮するために、微地形区分、層厚、N値の平面分布などから、大阪・神戸地域を図-3.5.2 に示す 20 地区に区分した。さらに、それぞれの地域において、ほぼ同深度にある N値と F。の土質試験データを DB から抽出し、その相関関係を求めた。図-3.5.3 に N値と F。の関係図の例を示す。この方法は一般に堆積している環境が同様であれば「細粒分含有率 F。が高いほど N値は小さい」という相関性が成立するとして F。≦50%の砂質土に対して相関式を求めている。ただし、沖積層の中には粘性土や礫を挟む地域があるので、粘性土は 67%(対象地域の平均値)、礫は 5%として平均細粒分含有率 F。を与えている。

図-3.5.2 大阪・神戸地域の沖積層の地域分け(平均 N 値分布をベースに)

図-3.5.3 各地域の沖積砂層の N 値と細粒分含有率 F_cの関係の例(つづく)

図-3.5.3 各地域の沖積砂層の N 値と細粒分含有率 F_cの関係(つづき)

(3) 250m メッシュ浅層地盤モデルによる沖積層の平面分布²⁾

図-3.5.4 に沖積層の層厚分布(上部沖積砂 As_U 層,沖積粘土 Ma13 層,下部沖積砂 As_L 層の合計 層厚)を示す。淀川から大阪湾に向かって層厚が厚くなっていることがわかる。なお、図内の空白域は、 ボーリングデータがなくモデル化していないか、沖積層が存在しないメッシュである。

図-3.5.5に250mメッシュ浅層地盤モデルによる大阪地域における東西方向の地盤モデル断面図の例 を示す。大阪・神戸地域では、表層部よりN値の小さな砂層、その下部には沖積粘土層が堆積している。

図-3.5.4 沖積層の層厚分布

この表層部の砂層は地震時に液状化する可能性の高い層である。図-3.5.6 に上部沖積砂層の 250m メ ッシュ毎の層厚の平面分布を示す。なお、上部沖積砂層は表層部の盛土も含めている。また、図-3.5.7、 図-3.5.8 に上部沖積砂層のそれぞれ N 値, F。値の深度方向 2m 毎の平面分布を示す。

図-3.5.2 の地域番号と図-3.5.6 の層厚分布より,上部沖積砂層は大阪・神戸地域の沿岸部および⑥ 上町台地西縁地域北部の天満砂堆地域,⑦上町台地地域の東部,⑧都島地域,⑨吹田砂州地域,⑬東大 阪南部地域の南東部で10m以上と厚く堆積している。なお,西大阪地域において沿岸部ほど層厚が増加 しているのは,表層の盛土層が沿岸部ほど厚く存在するためである。

図-3.5.7のN値の深度別の平面分布から、大阪地域では盛土層に相当する浅い位置のN値は全体的に10以下と小さい値となっている。深度が深くなると、⑥上町台地西縁地域、⑦上町台地地域、⑧都島地域、⑨吹田砂州地域では比較的良く締った砂が堆積しているが、他の地域ではN値は10程度となっている。一方、神戸地域では、表層部のN値は比較的小さな値となっているが、深度が深くなるとN値15以上の砂が全体的に堆積している。

図-3.5.8の F。値の深度別の平面分布から、西大阪地域において浅い位置では②北摂地域において F。 値が大きく、粘性土が堆積しているが、深度が深くなると全体的に 20%前後の値を示す。臨海部では一 部 F。値が大きく粘性土が見られる。東大阪地域は砂層と粘性土の互層となっているため、深い位置でも 全体的に F。値が大きな地域がある。神戸地域は表層では西部で比較的 F。値が大きくなっているが、深 度が深くなると 10%前後となっている。

以上のN値とF。値は後述の大阪・神戸地域の液状化予測に用いている。

図-3.5.9 に沖積粘土 Ma13 層の 250m メッシュ毎の層厚の平面分布を示す。沖積層の層厚分布と同様 に淀川から大阪湾に向かって層厚が厚くなっていることがわかる。この分布域は約 6000 年前の海進に よって海域なった地域に相当する。したがって、上町台地や東大阪地域の一部では Ma13 層は堆積して いない。

図-3.5.6 上部沖積砂層の層厚分布

(2) GL-2~-4m

(2) GL-2~-4m

(13) GL-4~-6m

(2) GL-6~-8m

図-3.5.8 上部沖積砂層の ん値の深度別平面分布

図-3.5.9 沖積粘土 Ma13 層の層厚分布

(4) 250m メッシュ浅層地盤モデルによる洪積層の平面分布³⁾

図-3.5.10 に第1洪積砂礫 Dg1 層の上面標高分布を示す。これは沖積層の下面標高分布とも一致する。 内陸に向かうにつれて Dg1 層の上面標高が上がっていることがわかる。

図-3.5.11 に Dg1 層の層厚分布を示す。Dg1 層は東大阪地域では東部ほど厚く堆積している。また, 西大阪地域では中之島を中心に北東 - 南北方向で厚く堆積している。これは Ma12 層上面が古大阪川(現 在の淀川)によって削剥され,そこに Dg1 層が堆積しているためである。また,西大阪地域の南部の住 之江区周辺と西部の武庫川沿い及び神戸地域の沿岸部で厚く堆積している。

図-3.5.12 に洪積粘土 Ma12 層の上面標高分布を示す。これは Dg1 層の下面標高分布とも一致する。 東大阪地域の東部と西大阪地域の武庫川沿いーはボーリングデータが少ないため、空白域が多い。西大 阪地域の梅田周辺から西側にかけて上面標高が低くなっている。これは Ma12 層の上面が古大阪川によ って削剥されているためである。

図-3.5.13 に Ma12 層の層厚分布を示す。東大阪地域では Dg1 層と同様に、東部に深くなっていく盆 地状の構造がわかる。西大阪地域では海側で厚く、陸側ほど薄い。やはり、削剥のため中之島を中心に 層厚が薄くなっている。神戸地域の臨海部はやはり厚く堆積しているが、内陸では Ma13 層と同様に Ma12 層はほとんど堆積していないことがわかる。

図-3.5.14 に Ma12 層の下面標高分布を示す。臨海部ほど下面標高が低く,上町台地に向かって下面 標高が高くなることがわかる。この Ma12 層の直下の層が第2 洪積砂礫 Dg2 層であり、本研究で工学的 基盤と定義したそうであるので、Ma12 層の下面標高が工学的基盤の上面標高となる。なお、上町台地 から北部にかけては Ma12 層が存在せず、さらに古い地層が堆積していると考えられるが、地層の同定 がされていない。したがって、この時点ではこの地域の工学的基盤は未定であった。

図-3.5.10 第1洪積砂礫 Dg1 層の上面標高分布

図-3.5.11 第1洪積砂礫 Dg1 層の層厚分布

図-3.5.12 洪積粘土 Ma12 層の上面標高分布

図-3.5.13 洪積粘土 Ma12 層の層厚分布

図-3.5.14 洪積粘土 Ma12 層の下面標高分布

(5) 洪積上町(DU) 層を取り入れた 250m メッシュ浅層地盤モデル⁴⁾

(4) で述べたように, 西大阪, 東大阪地域で Mal2 層が存在するメッシュでは工学的基盤となる Dg2 層の深度が決まっているが, 上町台地周辺は地層同定がされていないので, 工学的基盤が決まっていない。

そこで、上町台地周辺では堆積年代を問わず、以下の条件で工学的基盤層を仮定した。

・砂礫層では N≥50,粘性土層では N≥30 となる連続した層厚 3m 以上の層 この層と沖積層,Dg1 層に挟まれる層を,洪積上町(DU)層としてモデル化した。DU層の上端につい ては現在のモデル化の状況によって異なり,沖積層だけがモデル化されている場合と沖積層とDg1層が モデル化されている場合でそれぞれ,沖積層の下端,Dg1層の下端をDU層の上端とした(図-3.5.15)。 ただし,DU層の下端は周辺との連続性を考えて適宜修正を行った。このような作業をDBのボーリン グデータに対して行い,メッシュモデルを作成した。図-3.5.16は旧モデルでの各地層モデルの作成状 況である。DU層の設定範囲は大阪市内を走る2本の黒線に挟まれた地域とし,北限を江坂・千里丘陵 周辺,南限を大和川とした。この範囲には上町台地,上町台地北端~千里丘陵周辺,東大阪地域西部が 含まれる。DU層を250mメッシュでモデル化し,従来のモデルに組み入れた。

図-3.5.17 に 250m メッシュ浅層地盤モデルによる DU 層の上面・下面標高,層厚分布を示す。図(1) の上面標高は上町台地中央部で高く,縁辺部に向かって徐々に低くなっていく傾向が見られる。淀川流 域周辺では T.P.-25~-30m が多く,最も低い地域となる。また,千里丘陵に向かって標高が高くなった。 また,旭区周辺でも若干高くなる傾向が認められる。一方,図(2)の下面標高も上面標高と同様な傾向を 示すことがわかる。図(3)の DU 層の層厚は天王寺周辺から北側から大阪城周辺地域にかけて,特に層厚 が大きい地域がある。最も厚い場所で層厚は 20m 以上となった。同様に矢田周辺,関目周辺と豊中周辺 で層厚が大きいことが分かる。一方で,淀川流域や縁辺部では層厚が小さくなった。

図-3.5.18 に DU 層を組み込んだ 250m メッシュ浅層地盤モデルによる工学的基盤面の標高分布を示 す。中央の黒線の内側が DU 層を設定した領域であり、DU 層の下面標高と等しい。他の領域は Mal2 層 の下面標高(図-3.5.14)と等しい。DU 層と Mal2 層の標高分布の下面標高は調和的な分布となってい ることがわかる。

以下の地震応答解析では、この工学的基盤に地震動を入力している。

図-3.5.15 DU 層設定方法の概略図

図-3.5.16 旧モデルでの各地層モデル作成状況

(1) DU 層の上面標高

(2) DU 層の下面標高

(3) DU 層の層厚

図-3.5.17 DU 層の上面・下面標高, 層厚分布

図-3.5.18 工学的基盤面の標高分布

3.5.2 250m メッシュ浅層地盤モデルによる揺れやすさと液状化の予測 5)

(1) 解析モデル

解析には **3**. **5**. **1** の DU 層モデルを組み入れた新しい 250m メッシュ浅層地盤モデルを用いた。また, N 値からせん断波速度 V_sを算出する ⁶とともに,繰返し変形特性は**図-3**. **3**. **5** に示した H-D モデルを用 いた。**図-3**. **5**. **19** に示す一例のように,メッシュデータは左から①メッシュコード,②土質記号,③孔 ロ標高(m),④モデル上面深度(m),⑤モデル下面深度(m),⑥平均N値,⑦平均地下水位(m),⑧ 飽和単位体積重量(tf/m²),⑨湿潤単位体積重量(tf/m²),⑩層厚(m),⑪モデル番号(沖積:1,洪積: 2) から成る。丸印で示す-9999 や-999 のような値は,データ不足で値が得られなかったことを示す。こ こで,沖積層,Dg1層,Ma12層が深度方向に連続するか確認し,不連続部を修正した後,メッシュデー タの取り扱いは以下のルールに則った。

- 図-3.5.19 中の⑥平均 N 値の値が「-999.00」であれば,表-3.5.1 に従い,土質記号により値を定めた。なお,土質記号は全 8 種類である。
- 図-3.5.19 中の⑦平均地下水位の値が「-9999.00」であれば、全メッシュの平均地下水位より 2m に定めた。

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1J 1 1J 1 1J 1 1J 1 1J 1 1J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1J 1 1J 1 1J 1 1J 1 J 1 J
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1, 1 1,
i135-7332-24 6 5.66 3 4 16 4.16 2.2 2.1 i135-7332-24 6 5.66 4 5 7 4.16 2.2 2.1 i135-7332-24 6 5.66 5 6 4.16 2.2 2.1	1 1, 1 1, 1 1, 1 1,
135-7332-24 6 5.66 4 5 7 4.16 2.2 2.1 135-7332-24 6 5.66 5 6 6 4.16 2.2 2.1	
135-7332-24 6 5.66 5 6 6 4.16 2.2 2.1	
	1 14
135-7332-24 6 5.66 6 7 10 4.16 2.2 2.1	
135-7332-24 6 5.66 7 8 30 4.16 2.2 2.1	1 11
135-7332-24 S 5.66 8 9 10.5 4.16 1.95 1.85	1 1
135-7332-24 \$ 5.66 9 10 10 4.16 1.9 1.8	1 1
135-7332-24 \$ 5.66 10 11 9 4.16 1.9 1.8	1 1
135-7332-24 \$ 5.66 11 12 8.5 4.16 1.9 1.8	1 1
135-7332-24 S 5.66 12 13 9.5 4.16 1.9 1.8	1 1
i135-7332-24 S 5.66 13 14 10.5 4.16 1.9 1.8	1 11
i135-7332-24 S 5.66 14 15 17.5 4.16 1.9 1.8	1 11
135-7332-24 \$ 5.66 15 16 12.5 4.16 1.9 1.8	1 11
135-7332-24 6 5.66 16 17 21 4.16 2.2 2.1	1 1
135-7332-24 S 5.66 17 18 -999 4.16 1.9 1.8	1 1.
135-7332-24 C 5.66 18 19 5 4.16 1.63 1.53	1 1
135-7332-24 C 5.66 19 20 5 4.16 1.68 1.58	1 1.
135-7332-24 C 5.66 20 21 9 4.16 1.68 1.58	1 11
135-7332-24 C 5.66 21 22 6 4.16 1.6 1.5	1 11
135-7332-24 C 5.66 22 23 6 4.16 1.6 1.5	1 1
135-7332-24 C 5.66 23 24 6.5 4.16 1.6 1.5	1 11
135-7332-24 C 5.66 24 25 7 4.16 1.6 1.5	1 11
135-7332-24 C 5.66 25 26 7 4.16 1.6 1.5	1 1.
135-7332-24 C 5.66 26 27 7 4.16 1.6 1.5	1 11
135-7332-24 C 5.66 27 28 7 4.16 1.6 1.5	1 1
135-7332-24 C 5.66 28 29 7 4.16 1.6 1.5	1 1
135-7332-24 C 5.66 29 30 7 4.16 1.6 1.5	1 1
135-7332-24 C 5.66 30 31 6.5 4.16 1.6 1.5	1 1
135-7332-24 C 5.66 31 32 6 4.16 1.6 1.5	1 1,
135-7332-24 C 5.66 32 33 6 4.16 1.65 1.55	1 11
135-7332-24 S 5.66 33 34 11.5 4.16 1.81 1.71	1 11
135-7332-24 C 5.66 34 35 5 4.16 1.67 1.57	1 11
135-7332-24 C 5.66 35 36 6 4.16 1.66 1.56	1 1
135-7332-24 C 5.66 36 37 6 4.16 1.66 1.56	1 1
135-7332-24 C 5.66 37 38 7 4.16 1.62 1.52	1 11
i135-7332-24 C 5.66 38 39 8 4.16 1.62 1.52	1 11
135-7332-24 C 5.66 39 40 7 4.16 1.64 1.54	1 1,
i135-7332-24 S 5.66 40 40.66 37 4.16 1.95 1.850.	66 11
i135-7332-24 G 5.66 40.66 41.46 50 4.16 2.2 2.1 0	.8 21
135-7332-24 6 5.66 41.46 42.46 48.5 4.16 2.2 2.1	1 2,
135-7332-24 6 5.66 42.46 43.46 38.5 4.16 2.2 2.1	1 21
135-7332-24 6 5.66 43.46 44.46 42 4.16 2.2 2.1	1 2.
135-7332-24 6 5.66 44.46 45.46 50 4.16 2.2 2.1	1 2.
i135-7332-24 \$ 5.66 45.46 45.7 -999 4.16 1.9 1.80.	25 2.1
i135-7332-24 C 5.66 45.71 46.91 6.67 4.16 1.6 1.5 1	.2 21
i135-7332-24 C 5.66 46.91 47.91 6.5 4.16 1.6 1.5	1 2.
135-7332-24 C 5.66 47.91 48.91 5 4.16 1.6 1.5	1 21
135-7332-24 C 5.66 48.91 49.91 7.5 4.16 1.6 1.5	1 21
135-7332-24 C 5.66 49.91 50.91 7 4.16 1.6 1.5	1 2.
135-7332-24 C 5.66 50.91 51.91 7 4.16 1.6 1.5	1 21
135-7332-24 C 5.66 51.91 52.91 6.5 4.16 1.6 1.5	1 21
135-7332-24 C 5.66 52.91 53.91 5 4.16 1.6 1.5	1 2.
135-7332-24 C 5.66 53.91 54.91 6.5 4.16 1.6 1.5	1 2.
135-7332-24 C 5.66 54.91 55.91 6.5 4.16 1.6 1.5	1 2.
135-7332-24 C 5.66 55.91 56.91 7 4.16 1.6 1.5	1 21
135-7332-24 C 5.66 56.91 57.91 7.5 4.16 1.6 1.5	1 2.
135-7332-24 C 5.66 57.91 58.91 7.5 4.16 1.6 1.5	1 21
135-7332-24 C 5,66 58,91 59,91 6,75 4,16 1.6 1.5	1 21
135-7332-24 C 5.66 59.91 60.91 6 4.16 1.68 1.58	1 21
135-7332-24 C 5 66 60 91 61 91 5 4 16 1 69 1 59	1 21
135-7332-24 C 5 66 61 91 62 06 5 4 16 1 69 1 590	15 21

図-3.5.19 250m メッシュモデルのデータの例

記号	土質	N値
S	砂質土	20
G	礫質土	20
С	粘性土	3
0	有機質土	3
V	火山灰	3
Р	高有機質土	3
A	人工材料	3
R	岩盤	50

表-3.5.1 250m メッシュモデルのデータの例

(2) 工学的基盤における地震動

文献 7)を引用し、大阪府想定地震波の設定について言及する。

大阪府内における地震被害想定は,種々の内陸活断層に対して段階的な検討を行いつつ,最終的には 上町断層帯,生駒断層帯,有馬高槻断層帯,中央構造線断層帯,六甲・淡路断層帯,大阪湾断層の計6 断層の被害想定用地震動予測を行っている。予測地震動は500mメッシュで算定されている。この予測 地震動は以下に示す3ステップで検討されている。

- 巨視的断層モデルと距離減衰式を用いて地表面震度分布を算出し、震度暴露人口を指標として、 対象とする地震シナリオを選定する。
- ② 統計的グリーン関数法を用いてせん断波 500m/s 相当以上の工学的基盤面における地震動波形 を計算し、周波数依存を考慮した等価線形地震応答解析により、地表面地震動を算定し、地震 シナリオの府域への影響把握を実施する。
- ③ 府域に影響の大きい地震シナリオについて,ハイブリッド法(図-3.5.20)により地震動を予測 する。

以上のステップで用いられた地震動予測手法を表-3.5.2に,検討ステップについて表-3.5.3に示す。 南海トラフ地震想定波は,内閣府によって同様に,統計的グリーン関数法をベースに地震動を予測し ている¹⁰。

図-3.5.21, 図-3.5.22 にそれぞれ上町断層地震 A と南海トラフ地震の入力地震波の最大加速度分布 を示す(図の凡例が異なるので注意されたい)。図-3.5.21 に示す上町断層地震 A は平成 19 年大阪府地 震被害想定¹¹⁾による同地震の EW 波である。図-3.5.22(1),(2)に示すのは,内閣府南海トラフの巨大地 震モデル検討会¹²⁾において検討された震度分布・浸水域等のデータより,基本ケースと陸側ケースの EW 波である。なお,上町断層地震は大阪府内の想定地震波なので,対象は大阪府内のみとなっている。 一方,南海トラフ地震は神戸・大阪地域を対象としている。

図-3.5.21 より、上町断層地震 A は 500gal 以上が優勢で所により 1000gal を上回る。特に、天王寺以 北で加速度が大きい。天王寺以南でも上町台地上は加速度が 750gal 以上の比較的大きい値を示してい る。図-3.5.22(1)より、南海トラフ地震基本ケースは全体的に加速度が小さく、大きくても 300gal 以下 である。図-3.5.22(2)より、陸側ケースでも 300gal 以下が優勢であるが、上町台地中部~南部、及び、 解析域の北東部では 300~400gal の地域もある。

表-3.5.2 地震動の予測手法⁹⁾

図-3.5.20 ハイブリッド法の概念図⁸⁾

手法	概要
振幅特 経 性の推 策手法	強震記録の統計解析により作成された加 速度応答スペクトルの距離減衰式、フー リエ振幅を理論と強震記録に適合するよ うモデル化した式等を用いる手法
的 手 位相特 性の推 定手法	強震記録の統計解析により作成された、 波形の振幅包絡線や位相スペクトルの推 定式等を用いる手法(振幅特性の推定手 法と組み合わせ、時刻歴波形の作成に用 いる)
経験的 半 グリー 経 ン関数 験 法	小地震の観測波形を震源・伝播経路・サ イトの特性が反映された一種のグリーン 関数(経験的グリーン関数)と考え、こ れを重ね合わせて大地震の地震動を推定 する手法
的統計的グリー法ン関数法	強震記録の統計解析結果等から小地震の 地震波形(統計的グリーン関数)を作成 し、これを重ね合わせて大地震の地震動 を推定する手法
理論的手法	地震波の発生・伝播を理論的に数式を用 いて表現し、数値モデル化した震源断層 と地盤構造に基づいて地震動を計算する 手法
ハイブリッ ド法	上記の手法を組み合わせて用いる手法

表-3.5.3 大阪府想定地震波作成のステップ ⁷)

	ステップ1	ステップ2	ステップ3
検討内容	対象断層の決定 (府域への影響把握)	対象断層破壊モデルの選定 (市町村等への影響把握)	詳細法による検討 (府域対象のシナリオ)
評価指標	震度曝露人口	(震度6強以上)	
断層	12断層程度	6断層程度	内陸4断層+東南海・南海1
手法	距離減衰式 + 経験的表層増幅率 (巨視的断層モデル:一様すべり)	統計的グリーン関数法 + 表層地盤応答(等価線形) (微視的断層モデル:非一様すべり)	ハイブリッド法 + 表層地盤応答(等価線形等) (同左)
シナリオ	一様すべり	73(各断層1~35)	内陸5+東南海・南海1
予測結果	震度(経験的に換算)	震度&各地震動特性値など	震度&各地震動特性値など

図-3.5.21 上町断層地震 A の入力地震波の最大加速度分布

図-3.5.22 南海トラフ地震の入力地震波の最大加速度分布(続く)

図-3.5.22 南海トラフ地震の入力地震波の最大加速度分布(続き)

(3) 地表面最大加速度分布

図-3.5.23, **図-3.5.24** にそれぞれ上町断層地震 A と南海トラフ地震の地震応答解析による地表面最 大加速度分布を示す。

図-3.5.23 より、上町断層地震 A では上町台地上の加速度が増幅して大きく、1000gal を超えるメッシュが集中している。千里丘陵も加速度が大きい傾向が認められる。一方で、西大阪・東大阪の平野部では入力と比べて減衰し、概ね 500~750gal が優勢である。

図-3.5.24(1)より,南海トラフ地震基本ケースではほぼすべての地域で加速度が増幅している。図-3.5.24(2)より,南海トラフ地震陸側ケースでは上町台地周辺,淀川流域周辺と千里丘陵で大きく増幅 する傾向が見られた。また,神戸市兵庫区,長田区でも増幅する傾向が見られた。

なお、SHAKE では入力加速度が大きい場合には、せん断ひずみが大きくなり、地表面加速度が過大に求められる傾向にある。また、今回用いている H-D モデルはせん断ひずみが大きいと G(剛性)の低下が大きいので(図-3.3.5 参照)、地表面加速度の増幅がやや過大になったとも考えられる。

図-3.5.23 上町断層地震 A の地表面最大加速度分布

図-3.5.24 南海トラフ地震の地表面最大加速度分布(つづく)

図-3.5.24 南海トラフ地震の地表面最大加速度分布(つづき)

(4) 地盤の伝達関数の卓越周波数による揺れやすさマップ

図-3.5.25, 図-3.5.26 にそれぞれ上町断層地震 A と南海トラフ地震の地震波入力時における地盤の 伝達関数の卓越周波数分布を示す。これは、本研究における揺れやすさマップとなる。

図-3.5.25より、上町断層地震 A では地表面加速度の大きい地域では卓越周波数が大きく、小さい地域では卓越周波数が小さい傾向が見られる。また、図-3.5.25と図-3.5.26(1)、(2)を比較すると、南海トラフ地震の場合の卓越周波数は、上町断層地震 A の場合と比べて大きい傾向が有るが、上町台地周辺の卓越周波数は大きく変化しない。そのため、上町台地上の卓越周波数は地震波にあまり依存しないと考えられる。上町台地の他に、神戸地域の山側は、硬質な地盤であるため卓越周波数が大きくなっていると考えられる。図(1)と(2)を比較すると概ね変化はないが、西大阪地域の大阪湾に臨む地域は陸側ケースで長周期化(卓越周波数が小さい)の傾向が見られる。

図-3.5.25 上町断層地震 A 入力時の伝達関数の卓越周波数分布(揺れやすさマップ)

図-3.5.26 南海トラフ地震入力時の伝達関数の卓越周波数分布(揺れやすさマップ)(続く)

図-3.5.26 南海トラフ地震入力時の伝達関数の卓越周波数分布(揺れやすさマップ)(続き)

(5) 液状化危険度マップ

図-3.5.27, **図-3.5.28** にそれぞれ上町断層地震 A と南海トラフ地震入力時の液状化指数 *P*_L分布を示 す。先の地震応答解析結果より、各メッシュにおいて液状化指数 *P*_Lを算出し、メッシュごとの液状化危 険度の評価を行った。*P*_L算出の手順は **3.6.2** に従うが、*R* は簡易法によって求めた。また、地震時せん 断応力比 *L* は解析による地表面最大加速度*a*_{max}を用いる式(3.4.1)によって求めた。

図-3.5.27より、上町断層地震Aでは、西大阪地域の広い範囲でPLが20を上回ることから、西大阪地域における液状化の危険度は高いと言える。また、PLが25を超える激しい液状化の発生が懸念される地域は大阪市住之江区及び都島区である。都島区はN値が低い上部沖積砂層が厚く堆積している地域で、液状化が起こりやすい地盤構成となっていることがPLに表れていると考えられる。

図-3.5.28(1)より,南海トラフ地震基本ケースでは入力波の加速度が小さいこともあり, P_L は 10 以下が優勢である。P_L が 20 以上となるメッシュの密度が高い地域は,大阪市住之江区,都島区,西宮市 であった。西宮市の P_L が大きい理由は,地表面から浅い部分での砂層の堆積が多いためであると考えられる。

図-3.5.28(2)より、南海トラフ地震陸側ケースでは、大阪地域における地表面加速度が上町断層地震 A と比べて非常に小さいにも関わらず、PL はほぼ同等な値と傾向を示している。これは、南海トラフ 地震が海溝型地震であるため、R が小さいからと考えられる。

図-3.5.27 上町断層地震 A 入力時の液状化指数 凡分布(液状化危険度マップ)

図−3.5.28 南海トラフ地震入力時の液状化指数 凡分布 (液状化危険度マップ) (続く)

図-3.5.28 南海トラフ地震入力時の液状化指数 A 分布(液状化危険度マップ)(続き)

3.5.3 大阪地域の常時微動観測

(1) 常時微動観測の概要

地震時の地盤の増幅特性を評価するには、複数の地点で取得された複数の地震による強震記録に対し て一種の回帰分析を適用し、震源スペクトルやサイト増幅特性を推定する手法であるスペクトルインバ ージョンによって行うか、地盤構造を評価する指標として、地震時の震動特性に支配的な影響を持つ要 因の一つである地盤のS波速度構造を求める方法がある。しかし、近い地点で深層地盤が急変する地点 があることなどから、強震観測地点の記録のみで地震動を評価するには限界がある。また、S波速度はボ ーリング孔を使って地震波のP波とS波を測定するPS検層や、ボーリング試験から求まったN値から推定 することができるが、どちらもボーリング調査を伴うことから、調査を行える場所に制限があり、経済 的にも限界がある。そこで、ボーリング調査を伴うことなく低コストで簡易に地盤構造を推定する方法 として、常時微動観測が挙げられる。

常時微動は自然現象(周期1秒以上:脈動)や人間活動に起因する人工ノイズ(周期1秒以下:雑微動) といった様々な振動源から生じた波によって構成されている¹³)。それらの振動源は主に地表面にあり, 地表面は地盤の特性に応じて振動しているため,常時微動は表面波(地表面付近を伝播する波)が卓越 している。微動の震動源である地表面の揺れが卓越することから付近の地盤の特性を反映していると考 えられている。表面波には,上下動を伴わないラブ(Love)波と,上下動を伴うレイリー(Rayleigh)波 があり,レイリー波のみの上下動鉛直方向と,ラブ波とレイリー波の両方が含まれる水平方向のスペク トルの比を取ることで,地盤に固有な卓越周波数(揺れやすい周波数)を抽出できる。よって,地表面 付近の地盤条件と地震時の地表面の揺れやすさとの関係を,常時微動観測によって確認する。地盤の特 性を把握することができれば,表層地盤のモデルから検討した震動特性と比較することができる。

常時微動によるH/Vスペクトル比(後述)の一般的な周波数特性として,岩盤のような硬質地盤では 一般にH/V スペクトル比の形状がフラットで卓越周波数のピークが現われにくく,卓越周波数が高くな ることが知られている。厚い堆積層をもつ軟弱地盤では,H/Vスペクトル比の卓越周波数のピークが顕 著に現われ,卓越周波数が低くなる傾向にある。また,一般に基盤深度が深くなると,卓越周波数は低 くなる。つまり基盤深度と常時微動H/V スペクトル比から得られた卓越周波数との関係は,高い正の相 関をもっていると考えられている。

(2) 観測方法及び観測地点

観測に用いる振動計は図-3.5.29 に示す白山工業(株)製JU210 を使用した。観測の方法は、地表面に 振動計を設置し、水平2成分(NS方向・EW方向)と鉛直1成分の計3成分の振動測定を行った。サン プリング周波数は100Hz(0.01sec毎)とし、観測時間は、微動観測記録を整理する際に時刻歴波形から 163.84秒(16384個=2¹⁴個のデータ)の区間を3区間抽出するのに必要である時間を考慮し、23分間行 った。微動計の操作手順を以下に示す。

- ① 方位をあわせて地震計を極力地面の水平な位置に置く。
- ② 水準器の気泡が中央に来るように、手前側の可動脚を調整する。
- ③ 電源スイッチを押すと観測が開始される。
- ④ 23 分間観測した後,書き込み表示ランプが点灯していないことを確認し、電源スイッチを押して計測を終了する。この際、液晶パネルに何も表示されていないことを確認しておく。

観測時の注意事項としては, 計測を開始してから, 液晶パネルの表示が「RECORDING」「RECORD-」

となっていることを確認する。また、観測者から発せられる振動ができるだけ入らないよう、計測中は 機器から少し離れて観測する。観測中は、特別な振動などがあった場合記録用紙に記入し、データ整理 する際に参考とする。記録データは、1 分ごとに WIN フォーマットファイルが作成され、書き込まれ る。この際に書き込み表示ランプが点灯するが、④で記したように、このランプが点灯している間はデ ータを書き込んでいる最中なので、この時に電源を切ってしまうと、データが記録されない可能性があ るため注意する。また、観測時に雨や風などの影響がある場合は、図-3.5.30 エラー!参照元が見つか りません。のように、カバーをかぶせておく。

大阪地域における常時微動観測は,2015年に大阪市域を対象として観測を行ったことからはじまり (27地点),2016年に神戸地域・東大阪地域まで範囲を広げて観測を行い(109地点),2018年1月の上 町台地を中心とした大阪地域の常時微動観測空白域を埋める観測(198地点)の合計334地点の観測地 点をまとめた。これを図-3.5.31に示す。

図-3.5.29 常時微動計測器

図-3.5.30 常時微動計測器の保護

図-3.5.31 大阪・神戸地域における常時微動観測地点

(3) 常時微動観測データの解析方法

本研究において常時微動観測結果の H/V スペクトルを求めるプログラムは,(独)防災科学研究所の 強震観測網(K-NET)で公開されている,強震記録を表示・解析するためのプログラム Strong Motion Data Analysis ver.2(以下 SMDA2)を用いて以下の手順で整理を行った。

①常時微動観測記録の加速度(gal)-時間(s)グラフ(図-3.5.32参照)を表示させ、常時微動観測記録の 各成分について 0.1Hz のハイパスフィルターを施す^{注)}。

- ②得られた時刻歴波形の中から,記録用紙などをもとに,交通などの影響が少ないと考えられる163.84 秒(2¹⁴×0.01 秒)の区間を3区間抽出する。
- ③抽出した区間毎の時刻歴波形をフーリエ変換し、成分毎のスペクトルを求める。水平成分のスペクトルについては、NS成分とEW成分各々の二乗値の平均値の平方根により求める.

 ④水平成分と鉛直成分のスペクトルについては Parzen ウィンドウを用い,バンド幅 0.05Hz で平滑化 を行う。Parzen ウィンドウは以下の式で表される。

$$w(x) = \begin{cases} 1 - 1.5x^2 + 0.75|x|^3 & (|x| \le 1) \\ 0.25(2 - |x|^3) & (1 \le |x| \le 2) \\ 0 & (\mathcal{ZO}\mathbb{H}) \end{cases}$$
(4.1)

⑤水平成分のスペクトルを鉛直成分のスペクトルで除して H/V スペクトルを求め,3 区間分を平均 (単純平均)化したものを対象地点の常時微動 H/V スペクトルとする。

$$H/V = \frac{\sqrt{H_{NS}^2 + H_{EW}^2}}{V}$$
 (4.2)

ただし, H/V:常時微動の H/V スペクトル比 H_{NS}: NS 成分のフーリエスペクトル H_{EW}: EW 成分のフーリエスペクトル

V:上下成分のフーリエスペクトル

注) 今回は表層地盤の震動特性を明らかにするのが目的であるため,高周波数領域に注目している。 そのため、①でのハイパスフィルターは 0.1Hz としている。この手順で得られた観測結果を, 縦軸に H/V スペクトル、横軸に振動数(Hz) として両対数グラフで表す。

図-3.5.32 常時微動観測波形の例 (OCU 2018 A01)

(4) 観測結果

卓越周波数の平面分布を示す前に, 図-3.5.33 に示した7地点における H/V スペクトル比を図-3.5.34 に示す。これと併せて図-3.5.31 に示した全地点での観測結果について H/V スペクトル比の卓越周波数の平面分布を図-3.5.35 に示す。大阪湾では0.3~1.0Hz の低い周波数かピークが不明瞭(図中の●表記)な傾向を示している。これは埋立層より下に続く粘土層と砂礫層が互層になっていることが原因であると考えられる。

臨海部では 0.3~1.0Hz の低い周波数かピークが不明瞭(図中の●表記)な傾向を示している。これは 埋立層より下に続く粘土層と砂礫層が互層になっていることが原因であると考えられる。

上町台地上では 1.5Hz 以上の比較的高い周波数かピーク不明瞭となる傾向が見られる。高い周波数が 出ているのが図-3.5.33(4)上本町である。これは Ma13 層, Ma12 層が表れず,古い年代の層が浅層から 表れる上町台地の特徴である硬質地盤の特徴を捉えていると考えられる。東大阪地域では周波数のばら つきはあるものの概ね 1Hz 以上の値を示し,西大阪地域では 1Hz 以下の地点が存在するが,全体的には 1~1.5Hz を示していることが以上の常時微動観測から明らかとなった。

図-3.5.33 代表例のために選点した7地点

図-3.5.34 選点地点における常時微動 H/V スペクトル比(続く)

図-3.5.34 選点地点における常時微動 H/V スペクトル比(続き)

図-3.5.35 大阪・神戸地域における常時微動観測結果(卓越周波数分布図)

【参考文献】

- 1) KG-NET・関西圏地盤情報協議会:関西圏地盤情報データベース
- 春日井麻里・濱田晃之・大島昭彦・岡二三生・永井久徳(2016):地盤情報データベースを利用した 大阪・神戸地域における液状化予測, Kansai Geo-Symposium 2016,地盤工学会関西支部・地下水地 盤環境に関する研究協議会, pp.131-136.
- 新井瞬・大島昭彦・山田卓・堤杏紗・濱田晃之・春日井麻里・近藤隆義(2015):大阪地域の上部洪 積層(Dg1, Ma12)の 250m メッシュモデルと地下水位低下による沈下予測, Kansai Geo-Symposium 2015,地盤工学会関西支部・地下水地盤環境に関する研究協議会, pp.45-50.
- 4) 糟谷祐多・末吉拳一・大島昭彦・濱田晃之・春日井麻里(2019):大阪上町台地上の洪積上町層を取り入れた 250mメッシュ浅層地盤モデルの作成,第 54 回地盤工学研究発表会(投稿中).
- 5) 末吉拳一・大島昭彦・中村優孝・濱田晃之・春日井麻里・平井俊之(2019): 非線形地震応答解析に よる大阪表層地盤の揺れやすさの予測, 第54回地盤工学研究発表会(投稿中).
- 6) 山本浩司・田中礼司・関口春子・吉田邦一(2005):地盤情報データベースによる大阪堆積盆地の Vs 推定式と浅層地盤モデル,第40回地盤工学研究発表会, pp.39-40.

- 7) 大阪府(2007):大阪府自然災害総合防災対策検討(地震被害想定)報告書.
- 8) 防災科学技術研究所研究資料: 2.1.4 シナリオ地震に対する強震動評価 -波形合成法-, http://www.j-map.bosai.go.jp/j-map/result/tn_258/html/html/2_1_4.html.
- 9) 国土技術政策研究所(2007):土木技術資料, 49-10.
- 10) 南海トラフの巨大地震モデル検討会(2012):南海トラフの巨大地震モデル検討会(第二次報告書) 強震モデル編-強震断層モデルと深度分布について-
- 11) 大阪府(2007): 大阪府地震被害想定(平成 19 年 3 月), http://www.pref.osaka.lg.jp/kikikanri/keikaku higaisoutei/chokkagata soutei.html.
- 12) 内閣府(2018): 南海トラフの巨大地震モデル検討会, http://www.bousai.go.jp/jishin/nankai/model/ index.html.
- 13) 香川敬生(2011):常時微動観測の応用, http://www.cjrd.tottori-u.ac.jp/seeds_cgi/files/20110509130220 pdffile02.pdf.

3.5.4 揺れやすさマップ

強震時の揺れやすさ(表層地盤の地震動増幅特性)は、地盤材料の非線形性のために、与えられる入 力波に応じて結果が変わる。当該地点での地震シナリオが無条件で受け入れられるならば、直接その想 定波を入力して評価すれば良いが、現実として様々な地震が起こりうる状況であることを踏まえると、 入力波の違いによる感度を含めて評価することが重要である。そこで、工学的基盤相当の観測点で得ら れた全国各地の地震記録を網羅的に入力し、これを用いて地盤の揺れやすさを評価する。

(1) 入力波の選択

大阪平野を対象とした評価を行うことを前提とする。これまでの複数地点での検討結果から、上町台 地および湾岸部を除いて、Dg2 層を基盤とみなして評価できる場合が多いと考えられる。Dg2 層は概ね S 波速度 400m/s 程度であることから、S 波速度 400m/s 程度の地盤上で実際に観測された地震記録を入 力波に使うこととした。

防災科学技術研究所 K-NET, KiK-net 観測点のうち,深度 5m までの平均 S 波速度 (Vs₅) が 400-700m/s の範囲にある観測点を選定した。選定された観測点は K-NET が 60 点,KiK-net が 70 点である。これら の観測点で得られている記録のうち,計測震度 4.5~5.0 (震度 5 弱)の記録を選出した。記録のリスト を表-3.5.4,3.5.5 に整理する。K-NET 14 記録,KiK-net 12 記録である。なお,記録の選定基準には当 てはまるが、2011 年東北地方太平洋沖地震の本震直後の余震 (IWT019,2011/3/11 15:09)は、本震を含 む多くのイベントによる揺れが継続していたことを理由として除外した。なお、事前解析 ¹⁾では 35 波を 用いたが、震度 5 強以上の記録が含まれていたため、ここでは震度 5 弱の記録のみを用いる。

図-3.5.36 は、選択された全 26 記録の水平動 2 成分 PGA のヒストグラム、および水平動の加速度応 答スペクトル(減衰定数 5%)を重ね書きしたものである。PGA は 100~500cm/s²の範囲に概ね分布し ており、600cm/s²を超えるものが 2 記録ある。応答スペクトルで見ると、0.5 秒程度まで概ね PGA 程度 の加速度応答値であるが、徐々に応答レベルが低減する傾向は共通して見られる。

観測点名	Vs5 (m/s)	イベント日時	水平 2 成分合成 PGA (cm/s²)	計測震度値	地震種別
AKT017	474	2008/ 6/14 08:43	241	4.54	内陸地殻内
TIZ (101 F	40.4	2011/ 3/11 14:46	278	4.99	プレート境界
FASUIS	484	2011/ 4/11 17:16	179	4.53	内陸地殻内
FKS031	426	2011/ 7/31 03:54	320	4.62	プレート境界
IWT008	620	2011/ 3/11 14:46	385	4.98	プレート境界
		2003/ 5/26 18:24	352	4.78	スラブ内
IWT019	656	2011/ 4/ 7 23:32	174	4.82	スラブ内
		2012/ 3/27 20:00	144	4.73	内陸地殼内?
IWT023	434	2008/ 7/24 00:26	333	4.70	スラブ内
NAR007	422	2016/11/19 11:48	404	4.52	スラブ内
SAG001	492	2005/ 3/20 10:53	330	4.51	内陸地殻内

表-3.5.4 選択された記録のリスト(K-NET)

SMN015	470	2000/10/ 6 13:30	268	4.86	内陸地殻内
TCG002	408	2011/ 3/11 14:46	154	4.57	プレート境界
YMG014	400	2001/ 3/24 15:28	142	4.72	スラブ内

表	-3.	5.	5	選択	さ	れた	記録の)リ	ス	ト	(KiK-	-net)	
---	-----	----	---	----	---	----	-----	----	---	---	-------	-------	--

観測点名	Vs5 (m/s)	イベント日時	水平 2 成分合成 PGA (cm/s²)	計測震度値	地震種別
FKOH09	420	2005/ 3/20 10:53	186	4.51	内陸地殻内
HRSH07	580	2014/ 3/14 02:07	177	4.64	スラブ内
IWTH09	440	2008/ 7/24 00:26	531	4.94	スラブ内
IWTH17	484	2008/ 7/24 00:26	402	4.53	スラブ内
		2003/ 5/26 18:24	559	4.99	スラブ内
IWTH23	400	2008/ 7/24 00:26	474	4.77	スラブ内
		2011/ 4/ 7 23:32	542	4.98	スラブ内
		2003/ 5/26 18:24	366	4.83	スラブ内
IWTH25	430	2008/ 6/14 09:20	784	4.94	内陸地殻内
		2008/ 6/14 23:42	944	4.86	内陸地殻内
NIGH10	467	2004/10/23 17:56	215	4.53	内陸地殻内
SMNH10	553	2000/10/ 6 13:30	237	4.93	内陸地殻内

(2) 揺れやすさのばらつき評価

250m メッシュで評価されている大阪平野の地盤モデルを用いて、上述した入力波(25 波)に対する 地盤の応答を評価した。評価対象は、Dg2 層上面までがモデル化されている 1560 地点の地盤モデルで ある(図-3.5.37)。各モデルは、深度 1m 毎に年代と粘土層、砂層、礫層の区別が与えられている。ま た,密度やN値,N値に基づいたS波速度等が与えられている。ここでは,事前検討¹⁾と同様にAs層, Mal3層,Dgl層,Mal2層に区分するとともに,それぞれの地盤材料について整理されたHDモデルを 繰返し変形特性として与えた。モデルの最下層に半無限の弾性基盤を仮定する。この弾性基盤はS波速 度400m/sであると仮定した。

それぞれの基盤に上述した 26 波を水平 2 方向同時入力し,SHAKE を用いた等価線形解析を行った。 地点毎に,最大加速度 (PGA)の増幅率,最大速度 (PGV)の増幅率,伝達関数 1-2Hz 平均 (F12)の 増幅率,同 2-4Hz 平均 (F24)の増幅率をそれぞれ評価する。図-3.5.38 は地点毎に得られた各増幅率の 26 波平均値を示したものである。なお,半無限地盤の場合は入力に対して地表での応答値が理論的に 2 倍になるため,ここでは 2 倍を基準として白色で示している。指標毎に異なる空間パターンが示されて いるが,特に PGA の増幅率は空間変動が大きい。ただし,この空間分布図は平均値の分布を示したも のであって,必ずしも空間変動が大きいことと地点毎のばらつきの大きさとに対応があるわけではない。 図-3.5.38 には緯度 34.67°N を代表として,東西方向の空間変動を入力波毎の評価値とあわせて示した 断面図も示している。図から PGA や PGV の増幅率に比べて,F24 や F12 の増幅率はばらつきが小さく, 有意な空間変動が与えられていると考えられる。一方,PGA や PGV は空間変動を議論できるほど有意 なものではない可能性が示唆される。第5章ではこの結果を踏まえて,ばらつきを考慮した空間解像度 で揺れやすさを表示することを検討する。

図-3.5.37 評価対象とする地盤モデルの位置(黒四角)

【参考文献】

 後藤浩之,濱田晃之,中村優孝,大島昭彦,甲斐誠士,景山健,春日井麻里,佐川厚志,堤杏紗, 永井久徳,阪東聖人,深井晴夫(2018):地盤の非線形応答解析結果に及ぼす繰返し変形特性モデ ルの影響 一大阪地域を事例として一,Kansai Geo-Symposium 2018 論文集, 2018.
3.6 線状構造物沿いの液状化危険度評価

3.6.1 背景および概要

大阪地域では、昭和20年から30年にかけて過剰な地下水の汲上げが行われたことにより地盤沈下が 生じ、これを防止するために昭和37年に地下水汲上げ規制が制定された。この制度が現在でも継続さ れていることにより、沖積砂層の地下水は高いレベルにある。また、大阪・神戸地域全体に沖積砂層が 緩く堆積しているため、現在危惧されている南海トラフ巨大地震が起こった際には液状化による甚大な 被害が予想される。

また近年,激甚化する地震や豪雨などの自然災害が多発している。1995年兵庫県南部地震では,瀬戸 内海沿岸の地域を中心に大規模な液状化が発生し,平坦地では地盤の沈下,沿岸地域では地盤の水平移 動等の被害が生じ,港湾への被害,鉄道や道路の橋脚の損壊などが発生した。

本節では「関西圏地盤情報ライブラリー¹」にて Web 公開されている大阪・神戸地域において作成した 250m メッシュの沖積層地盤モデルを用い,道路橋示方書 ²⁾の式に基づき簡易法による液状化予測を行い,線状構造物沿いにおける液状化の危険度について考察した。

3.6.2 液状化予测方法

判定式は,最も一般的に用いられている平成29年度版道路橋示方書・同解説V 耐震設計編²⁾を用いた。液状化予測方法を既に**3.2.2**に示したので,割愛する。また,液状化危険度を表す指標として*P*L値を用いた。

ここで,道路橋示方書による地震時せん断応力比 *L* を求める際の設計水平震度の標準値を**表-3.6.1** に示す。

抑粉建加	しべい1地雲動	レベル2地震動			
- 地盈裡別	レベル1地展到	タイプ I	タイプⅡ		
I 種地盤	0.12	0.50	0.80		
Ⅱ種地盤	0.15	0.45	0.70		
Ⅲ種地盤	0.18	0.40	0.60		

表-3.6.1 液状化の判定に用いる地盤面の設計水平震度の標準値

表-3.6.1の地盤種別は,原則として次式で算出される地盤の特性値 *T*_Gをもとに,**表-3.6.2**により区分することになっている。

$T_{\rm G} = 4 \sum_{i=1}^{n} H_i / V_{\rm si}$

ここに、*T*_G: 地盤の特性値(s) *H*_i: i 番目の地層の厚さ(m)

Vsi:i番目の地層の平均せん断弾性波速度(m/s)

粘性土の場合: $V_{\rm si} = 100 N_{\rm i}^{1/3}$

砂質土の場合: $V_{\rm si} = 80 N_{\rm i}^{1/3}$

Ni:標準貫入試験によるi番目の地層の平均N値

i:当該地盤が地表面から基盤面までn層に区分されるときの,地表面からi番目の地層の番号。基盤面とは,粘性土層の場合はN値が25以上,砂質土層の場合はN値が50以上の 地層の上面,もしくはせん断弾性波速度が300m/s程度以上の上面をいう。

地盤種別	地盤の特性値 $T_{\rm G}$
I 種	$T_{\rm G} < 0.2$
Ⅱ種	$0.2 \le T_{\rm G} < 0.6$
Ⅲ種	$0.6 \leq T_{\rm G}$

表-3.6.2 地盤種別の区分条件

また,道路橋示方書による地盤種別の概略目安を表-3.6.3に示す。

表-3.6.3 地盤種別の概略目安

I種	良好な洪積地盤および岩盤
Ⅲ種	沖積地盤のうち軟弱地盤
Ⅱ種	I 種地盤およびⅢ種地盤のいずれにも属さない洪積地盤あるいは沖積地盤

また,兵庫県南部地震における液状化噴砂の分布データなどをもとに PL 値と液状化の程度の関係を 検討した結果,**表-3.6.4**のような関係がわかった³⁾。ただし,近年道路橋示方書が改定されているた め,この PL 値と液状化の程度の関係は参考程度として捉えるのが望ましい。

P _L 值	液状化
0~5	液状化はほとんどなし、被害なし
5~10	液状化の程度は小さい,構造物への影響はほとんどない
$10 \sim 20$	液状化は中程度,構造物によっては影響の出る可能性がある
$20 \sim 35$	激しい液状化,噴砂が多く,直接基礎の建物が傾く場合あり
35以上	非常に激しい液状化、大規模な噴砂と構造物の被害

表-3.6.4 PL 値と液状化の程度との関係 3)

3.6.3 液状化予测条件

(1) 地盤種別

対象とする大阪・神戸地域では沖積層が広く堆積しているので、ほとんどの地域が表-3.6.3のII種地盤に相当するが、図-3.6.1⑦上町台地地域には Ma13層が存在せず、I種地盤もしくはII種地盤であると考えられる。そこで上町台地地域において沖積層平均N値が比較的小さく、深い層までモデル化されている10個のメッシュを選定し、 T_{G} を算定した。結果を表-3.6.5に示す。選定したメッシュ10個のうち中7個が0.2以下となったため、表-3.6.2より上町台地地域をI種地盤として設定する。

図-3.6.1 大阪・神戸地域の地域分け

メッシュコード	T _G	メッシュコード	$T_{\rm G}$
5135-7401-14	0.12	5135-7471-21	0.19
5135-7424-14	0.14	5135-7472-11	0.12
5135-7432-42	0.16	5135-7472-12	0.23
5135-7451-44	0.19	5135-7472-13	0.20
5135-7461-24	0.15	5135-7472-14	0.21

表-3.6.5 T_G算定結果

(2) 設計水平震度

想定する地震動はレベル2地震動タイプIの海溝型とする。(1)より,図-3.6.1⑦上町台地地域をⅢ 種地盤,その他の地域をI種地盤としたので,**表**-3.6.1より,設計水平震度 k_{hgL0}は上町台地地域では 500gal,その他の地域は400galとした。また,設計水平震度 k_{hgL0}を半分とした 200gal(上町台地地域 では 250gal)の場合についても予測を行った。

(3) 地震特性による補正係数 cw

海溝型の南海トラフ巨大地震では、断層規模が大きいことにより強い揺れが長時間継続することが予想される。2011年東北地方太平洋沖地震では、大きな地震動が長時間継続したことから、顕著な液状化が発生した。道路橋示方書では、海溝型地震動の場合 *cw*=1.0 としているが、継続時間の長い地震動の場合は 1.0 を下回る値を用いる必要があることも指摘されている⁴。そこで、*cw*を 1.0、0.9、0.8 と変化さ

せ cwによる液状化危険度への影響についても検討した。

(4) 地下水位

地下水位は、「関西圏地盤情報データベース」に登録されている各ボーリングの孔内水位(W.L.)より、250mメッシュ内の平均水位を求めた結果と、微地形条件毎の平均水位を比較し、水位の浅い方を 採用した。図-3.6.2に大阪・神戸地域おける250mメッシュの微地形区分図⁵⁾を示す。

図-3.6.2 微地形区分図⁵⁾

3.6.4 大阪・神戸地域における液状化予測結果

3.6.3 に示した予測条件で、大阪・神戸地域において 250m メッシュの地盤モデル毎に液状化予測を 行い、液状化マップを作成した。予測には、3.5.1 に示した 250m メッシュ毎に深度方向 1m ピッチで求 めた土質特性(N値,密度)と深度(上・下面深度),層厚を用いた。また、細粒分含有率 F_cは地域毎

(図-3.6.1) に N 値と F_cの関係を求め推定した。以上より求めた P_L値の分布図を図-3.6.3 に示す。 液状化危険度の高い地域は、大阪地域、神戸地域ともに沿岸部の埋立地域となっている。ただし、埋 立地は砂や粘性土以外の材料も含めて埋立を行っていることも多く、細粒分含有率 F_cや単位体積重量_A を適切に評価できていない可能性もあるため、注意が必要である。東大阪地域は、西大阪地域に比べて 液状化危険度は低くなっている。千里丘陵南縁、都島、生駒山地西縁でも一部で液状化危険度が高くな っている。これは砂層が非常に厚く、N 値が小さい土質構成になっているためであると考えられる。

また,地震特性による補正係数 c_w は動的せん断強度比 R を求める際に用いられる。 c_w を小さくする と R の値も比例して小さくなり,液状化に対する安全率 F_L の値が小さくなる。そのため、 c_w が小さく なるにつれて,液状化危険度は大きくなっている。 c_w を変化させることで予測結果が変わるため、液状 化予測を行う際には c_w の値をどう設定するか注意が必要である。

(a) 400gal

(b) 200gal (1) *c*_w = 1.0 図-3.6.3 *P*_L値の分布(続く)

(a) 400gal

(2) c_w = 0.9
 図-3.6.3 P_L値の分布(続く)

(a) 400gal

(3) *c*_w = 0.8 図-3.6.3 *P*_L値の分布(続き)

3.6.5 液状化予測結果の検証

3.6.4 で示した大阪・神戸地域における 250m メッシュ地盤モデルにおける液状化予測結果の精度を検証するため、「関西圏地盤情報データベース」に登録されているボーリングデータを用いた液状化予測結果との比較および、**3.4.2** で示した弁天町地区における詳細な地盤調査の結果を用いた液状化予測結果との比較を行った。

なお検討には、レベル2地震動タイプIの海溝型、地盤面の設計水平震度 k_{hgL0}は 400gal、地震動特性による補正係数 cwは 1.0 としたときの結果(図-3.6.3(1)(a))を用いた。

(1) ボーリングによる液状化予測結果との比較

大阪地域のある線状構造物を6区間(路線A~F)に分けて,250mメッシュ沖積層地盤モデルおよび ボーリングデータの液状化断面図を作成し,両者の比較を行った。各メッシュに1本,比較に用いる代 表のボーリングデータを選定している。ボーリングは可能な限り,掘進長が20m以上でN値が比較的 多いデータを選定した。

図ー3.6.4に路線 A, B, C, D, E, Fに結果を示す。各図の上段に選定したボーリングの位置,中段 に 250m メッシュ沖積層地盤モデルの液状化断面図(赤字が *P*L 値),下段にボーリングデータの液状化 断面図を示す。

図-3.6.4 に示した 6 区間における 250m メッシュモデルとボーリングデータの P_L 値を比較した結果 を図-3.6.5 に示す。両者の関係にばらつきはあるが、相関係数 R = 0.858 であり、250m メッシュモデルによる P_L 値は生のボーリングデータによるものと相関があることがわかる。

図-3.6.4 線状構造物の液状化断面図(続く)

図-3.6.4 線状構造物の液状化断面図(続く)

図-3.6.4 線状構造物の液状化断面図(続く)

図-3.6.4 線状構造物の液状化断面図(続く)

図-3.6.4 線状構造物の液状化断面図(続き)

図-3.6.5 250m メッシュ沖積層モデルとボーリングデータにおける PL 値の相関図

(2) 弁天町地区による液状化予測結果との比較

弁天町地区での詳細な地盤調査の結果およびサンプリング試料を用いて実施した繰返し非排水三軸 試験の結果を基に,液状化判定に必要なデータを整理した結果を表-3.6.6に示す。

表-3.6.6の値を用いて,道路橋示方書に従い液状化判定を行うと, $P_L = 22.3$ となった。また,繰返し非排水三軸試験の結果による R_L を用いた場合は $P_L = 25.4$ となった。ただし,繰返し非排水三軸試験は深度 5.50m~11.50m でのみ実施されているため,それ以外の層の R_L は実測値を用いて道路橋示方書に定められている式により算定した。

弁天町地区における柱状図とN値, F_c , R_L , F_L 値の比較を図-3.6.6に示す。図には、地盤調査実施 位置に該当する 250m メッシュモデルにおける算出結果も示している。250m メッシュモデルでの P_L 値 は 17.4 (図-3.6.4(5)モデル断面図 No.6)であり、地盤調査結果および繰返し非排水三軸試験結果を用 いて求めた P_L 値より少し小さくなっている。これは沖積砂層上部のGL-2.00m~4.80mに浚渫土があり、 液状化対象層に該当したことが原因であると考えられる。2.00m~5.00mの間で分布していたシルトを液 状化対象層から除いた場合の P_L 値は、実測値で P_L =16.0、繰返し非排水三軸試験結果の R_L を用いると P_L =19.0という結果になり、250m メッシュモデルの値とほぼ一致する。

八桁	十度マード	上端深度	下端深度	N值平均深度	N店	γ_t	F _c	T	D50	三軸試験結果
万須	工員コート	(GL-m)	(GL-m)	(GL-m)	/V]但.	(kN/m3)	(%)	I _p	(mm)	RL
細粒分まじり砂質礫	GS-F	0.00	0.50	0.30	8.0	20.58	10.2		4.090	
細粒分質砂質礫	GFS	0.50	1.00	0.81	2.8	20.58	16.3		1.517	
砂質粘土(低液性限界)	CLS	1.00	1.64	1.40	0.6	18.79	52.8	22.1	0.090	
砂まじり粘土(高液性限界)	CH-S	1.64	2.15	1.90	1.8	18.79	71.3	24.7	0.045	
砂まじり粘土(低液性限界)	CL-S	2.15	2.50	2.25	0.0	17.24	94.0	21.2	0.014	
砂まじりシルト(低液性限界)	ML-S	2.50	3.00	2.75	0.0	16.76	90.5	11.8	0.022	
砂まじりシルト(低液性限界)	ML-S	3.00	3.50	3.23	0.0	16.87	88.6	8.7	0.027	
砂質粘土(低液性限界)	CLS	3.50	4.00	3.80	1.0	17.43	75.1	11.3	0.039	
砂まじり粘土(低液性限界)	CL-S	4.00	4.70	4.43	0.5	17.16	82.7	18.1	0.022	
細粒分質砂質礫	GS-F (スラグ)	4.70	5.00	4.80	5.0	16.18	10.3		3.073	
砂質粘土(高液性限界)	CHS	5.00	5.50	5.33	1.7	15.00	40.9	35.1	1.134	
砂質粘土(低液性限界)	CLS	5.50	6.00	5.80	4.0	18.56	56.1	10.4	0.054	0.240
細粒分質砂	SF	6.00	6.50	6.30	3.0	19.29	37.6	6.1	0.118	0.240
細粒分質砂	SF	6.50	7.00	6.80	3.0	19.07	27.7		0.149	0.283
細粒分質砂	SF	7.00	7.50	7.31	5.6	19.43	24.4		0.164	0.283
細粒分質砂	SF	7.50	8.00	7.81	7.5	18.09	22.4		0.194	0.296
細粒分質砂	SF	8.00	8.50	8.30	14.0	18.94	32.4		0.132	0.296
細粒分質砂	SF	8.50	9.00	8.80	6.0	17.57	19.2		0.238	0.278
細粒分質砂	SF	9.00	9.50	9.30	8.0	18.15	28.8		0.146	0.278
細粒分質砂	SF	9.50	10.00	9.80	8.0	17.46	42.4	8.0	0.095	0.303
砂質粘土(低液性限界)	CLS	10.00	10.50	10.30	6.0	17.63	67.4	14.4	0.048	0.303
砂質粘土(低液性限界)	CLS	10.50	11.00	10.80	8.0	17.14	53.2	13.3	0.068	0.313
砂質粘土(低液性限界)	CLS	11.00	11.50	11.33	4.3	16.37	72.8	17.2	0.041	0.313
砂まじり粘土(高液性限界)	CH-S	11.50	12.00	11.83	3.4	16.38	90.3	38.5	0.014	
粘土(高液性限界)	(CH)	12.00	12.50	12.31	2.8	16.57	97.9	28.2	0.013	
粘土(高液性限界)	(CH)	12.50	13.50	13.32	2.7	16.98	98.6	37.6	0.008	
粘土 (高液性限界)	(CH)	13.50	14.50	14.33	2.6	16.52	99.7	40.8	0.005	
粘土(高液性限界)	(CH)	14.50	15.50	15.32	2.7	16.33	97.5	46.2	0.004	
粘土 (高液性限界)	(CH)	15.50	16.50	16.33	2.6	16.16	97.5	53.2	0.003	
粘土 (高液性限界)	(CH)	16.50	17.50	17.31	2.9	15.97	98.9	58.8	0.002	
粘土 (高液性限界)	(CH)	17.50	18.50	18.32	2.6	15.74	98.5	61.7	0.002	
粘土 (高液性限界)	(CH)	18 50	20.00	19 30	3.0	15.89	98.8	60.5	0.002	

図-3.6.6 地盤調査結果による柱状図とN値, F_c, R_L, F_L値の比較

【参考文献】

- 1) 関西圏地盤情報ネットワーク: 関西圏地盤情報ライブラリー, http://www.geo-library.jp/, 2019.2 参照
- 2) 公益社団法人 日本道路協会(2017):道路橋示方書·同解説(V 耐震設計編)
- 3) 大阪府土木部(1997):大阪府土木構造物耐震対策検討委員会報告書
- 4) 八代和幸, 杉戸真太, 八島厚, 古本吉倫, 渦岡良平 (2003): 震動継続時間の影響を考慮した液状化 危険度判定法について, 第27回地震工学研究発表会
- 5) 国土地理院(2007): 数值地図 25,000(土地条件) 西日本

3.7 まとめ

WG1 では,近年の地震災害の頻発,及び今後発生が予想される南海トラフ地震、大阪市域中央を南 北に走る上町断層帯等による地震災害を考慮し,関西圏の詳細な地盤情報に基づいた地震動の応答特性 (地盤の揺れやすさ)や液状化の評価手法について検討を行った。

検討は大阪市内のモデル地区(ウメキタサイト,住之江,弁天町)において精緻な地盤調査を実施し, 大阪平野特有の各土層の動的特性,液状化強度等について把握し,適切な工学的耐震基盤面の設定や応 答解析手法,液状化判定手法について検討を行った。

また,関西圏地盤情報データベースや関係機関の資料を用いて,地盤の動的特性値を収集し,各土層 の動的特性モデルを設定した。

これらの詳細な検討結果を基に,関西圏地盤情報データベースを活用して,広域的なハザードマップ (液状化マップ及び揺れやすさマップ)を作成した。これらのマップは各自治体においても公表されて いるが,本委員会で実施したものは,精緻な地盤モデルに当該地区特有の動的特性を考慮したものであ り,設定した外力条件のもとではより精度の高い結果となっている。このハザードマップを用いること で,任意地点だけでなく鉄道や道路,河川堤防等の線状構造物沿いのハザードを把握することが可能で あり,点検や対策等の優先度の設定にも活用出来るものである。

各検討項目の結果概要を以下に示した。

地盤の液状化評価法について

一般的な砂質土については、簡易液状化判定式と室内土質試験による液状化強度比に大きな差異は認められない。ただし、N値が大きくF。が大きい土層に関しては、判定手法により判定結果に差異が生じる。換算式(H29道示,H24道示、東京ガス式)による違いについては、基本的には大きな差異はないが、傾向として東京ガス式、H29道示,H24道示の順にPL値が小さくなった。

液状化強度比を求める繰り返し三軸試験と中空ねじり試験による比較では、概ね同等の強度比が算出 され、両試験の液状化強度比の差はN値や試験深度、各種物理特性で明確な相関性は認められなかった。 ただし、F。が 50%以下の土質で中空ねじり試験による液状化強度比の方がやや大きくなる傾向が認めら れた。

② 動的変形特性のモデル化について

関西圏において調査された動的変形試験を収集し、関西圏の地盤において適切な動的変形特性のモデル化を行った。その結果、動的特性のモデル化は R-O モデルよりも、H-D モデルがより適切であることがわかった。ただし、低ひずみ領域での減衰定数はいずれのモデルも動的試験結果との整合性が低い。

この H-D モデルと一般的な土研式モデルで液状化検討を行った結果, H-D モデルを使用した方がやや 液状化しやすい傾向となった。これは, 土研式よりも動的変形試験結果による H-D モデルの方がせん断 応力 τが大きくなることから, 地震時せん断応力比 L が大きくなり液状化しやすくなったものと考えら れる。

一次元地震応答解析について

広く実務で用いられている等価線形解析(SHAKE, DYNEQ)は、その解析手法による違いは顕著で はないが、DYNEQ はやや短周期成分が多く含まれた地震動であり、これに伴いひずみがやや大きく評 価される傾向にある。また、両手法ともに伝達関数は検層モデルに比べてピーク周期が長周期側にシフ トする。

弁天町地区をモデル地盤として、時刻歴非線形解析と等価線形解析による地震応答解析の差異につい て検討を行った。結果、加速度応答スペクトルや地震時せん断応力比Lは概ね同等であり、液状化判定 結果についても大きな違いは無かった。ただし、地震波が衝撃型の場合は、時刻歴非線形解析の方が液 状化しにくい結果となった。

④ 揺れやすさマップ,液状化マップの構築について

大阪市域を中心に耐震基盤面となる Dg2 層 (Dg2 層が不明瞭な上町台地では洪積上町(DU)層)まで広域的にモデル化を行い (250m メッシュ), ②で設定した動的変形モデルを活用して,各地震動における 液状化危険度,揺れやすさについてまとめた。結果,液状化の危険度が相対的に高い地域として西大阪 地域が挙げられ,とくに液状化リスクが高いのは住之江区や都島区であることがわかった。なお,南海 トラフ地震 (陸側ケース) は地表面加速度がそれほど大きくはないが,海溝型地震であるため R が小さ くなり,液状化指数 PL は上町断層地震 A とほぼ同等な値となった。

このように視覚的な整理を行うとともに、各種のパラメータがデジタルでモデル化されているため、 今後多様な条件による評価が可能となった。

なお、大阪地域及び神戸地域において常時微動観測を実施(3ヶ年で計334地点)した結果を整理すると、地域的に卓越周期が異なることが認められた。これは、その地域の地盤特性(地盤の硬さ、軟弱層の厚さ等)を表していると推察される。

⑤ 線状構造物の液状化危険度評価について

④のデータベースを用いて、大阪地域のある6区間の線状構造物の液状化危険度を算出した。

6 区間における 250m メッシュモデルとボーリングデータの $P_{\rm L}$ 値を比較した結果,両者の関係にばらつきはあるが,相関係数 R = 0.858 であり, 250m メッシュモデルによる $P_{\rm L}$ 値は生のボーリングデータによるものと相関があることがわかった。

以上, WG1 の研究成果の概要を述べた。先述したとおり、今回作成した広域地盤モデル、及び各土 層の動的特性モデルは、当地区の膨大なデータを活用した精緻なモデルである。今後は、このモデルを 用いて多様な地震外力を入力することで、ハザードの地域的な大小の比較が可能であり、脆弱性の改善 の優先度を検討出来る。

また,これらのマップを公表し,広く一般市民の皆様に理解してもらうことで,地震災害に対する理 解を深め,地震災害の特徴や事前準備の大切さ,発災時の対応等啓発していくことが大切である。

4章 地震・豪雨による土砂災害検討

4.1 はじめに

既存の地盤情報データベースは、各所で得られたボーリングデータを統合したものである。そのため、 ある目的をもって得られた土質柱状図であり、人間活動の利用に供さない土地に関する情報はそもそも 乏しくなっている。また、造成などによって人工的に改変された土地に関する情報についても、原地盤 の情報があるのみで、造成後の地盤情報はほとんどない。結果的に、自然斜面や造成地盤は地盤情報が ないため、ハザードマップを作成する際には、地盤情報によらない地形情報のみで評価されるのがほと んどである。特に、傾斜地では地震時、豪雨時とも崩壊リスクが高まるものの、その安定性評価は地形 的要因と表層地盤の状況が反映されるのみである。ここでは、このような地盤情報のない自然斜面や造 成地のリスク評価について考える。

4.2 盛土における土砂災害検討

4.2.1 自然環境下の地盤構造物

地盤材料は含水状態で品質が大きく異 なる。盛土や自然斜面といった陸上の地盤 構造物は,降雨,蒸発散といった自然の乾 湿条件下にあり,内部の含水状態とは時々 刻々と変化しており,それに伴って変形強 度特性といった品質変化が起こり得る。こ こでは,実物大の模型盛土試験を行い,降 雨浸透挙動を詳細にモニタリングするこ とで,自然環境下にある盛土内に生じ得る 含水率分布から,地盤構造物の品質変化を 明らかにする。

(1) 模型盛土概要

盛土は難透水性地盤上に構築され, 天端 幅 4.0m, 盛土高さ 2.0m, 法面勾配 1:1.8 である(図-4.2.1)。天端は実車両が通行 できるように砂利による簡易舗装を施し た。盛土材料として,建設発生土および建 設発生土を 2 種類の製鉄スラグと混合し たスラグ混合土を用いた。スラグ混合土は 建設発生土に体積比で1/3のスラグを混合 したものである。それぞれの粒度分布を図 -4.2.2に示す。高含水比の建設発生土に スラグを混合することで粒度改善効果を 見込んでいる。

図ー4.2.3

に室内締固め試 験の結果を示す。建設発生土で、最適含水 比 16.8%, 最大乾燥密度 1.73g/cm³となっ ており、スラグを混合することで締固め特 性が変化しているのが確認できる。建設発 生土およびスラグ混合土 A, B で構築され た盛土延長はそれぞれ 3m であり,盛土構

図-4.2.1 盛土の概形

築時には、オーバーコンパクションを避けるために、振動ローラーとタンパーを用いて慎重に多層締固 めを行い、層ごとに現場密度試験を行った。図-4.2.4 は基盤からの高さごとの密度試験結果である。 建設発生土は、全体的に締固め度が低く、締固めが困難な材料であると言える。スラグ混合土では比較 的よく締固まっており、同時に行った原位置透水試験では、建設発生土、スラグ混合土でそれぞれ 10-⁹(m/sec)、10⁻⁶(m/sec)オーダーの透水係数が得られた。

(2) 計測概要

降雨や蒸発といった自然の気象条件下にある盛土の 水収支を調査するために、数種の計測器が設置された。 地盤構造物の安定性は含水状態に大きく依存し、 地盤内 で発揮されるサクションによって含水状態が決まるこ とが知られている。しかしながら、地盤材料の保水特性 を表す水分特性曲線(サクション~含水率関係)はヒステ リシスを有するのが一般的であり、 サクション ~ 含水率 は唯一の関係を示さない。さらに、サクションを計測す るテンシオメーターと含水率計は水収支があった場合 の感受性に違いがあることも知られている。そこで、本 研究ではテンシオメーターと含水率計を両方とも設置 した。地盤内の空気圧変化は微小であることを想定し、 空気圧計測には高精度の圧力計を用いた。また, 圧力計 の温度補正のために、気温と地温も同時に計測した。図 -4.2.5, 図-4.2.6 に計測器の設置位置概要を示す。計 測器は3断面に分けて、それぞれ深度20cm、40cm(スラ グ混合土盛土では 10cm、30cm)に設置した。図中の番号 は計測チャンネルを示す。含水率計は2つのデータロガ ーに接続されており、データロガーごとに接続チャンネ ル番号を青とオレンジに区別して(以降,上部データロガ ー,下部データロガーとする)示した。また,盛土最深部 には盛り立て中の含水率変化も計測できるように、1 層 目の締固めが終わった段階で含水率計を設置している (断面 B のオレンジで示した含水率計)。それ以外の計測 器はすべて, 盛土完成後に設置した。計測は, 盛土構築 の 2015 年 11 月下旬から 2017 年 10 月まで行った。

(3) 計測結果および考察

まずは,建設残土における計測結果について示す。図 -4.2.7に,2015年12月の含水率計の計測結果を示す。 横軸のマイナスの値は11月を表す。降雨量は棒グラフ で表している。白抜きプロットは浅部の,色塗りプロッ トは深部のセンサーを表す。図-4.2.7(b)中の実線で示 された1chは盛土深部の含水率を表しており,盛土盛り 立て中の含水率変化を表している。

図-4.2.4 盛土内締固め度分布

図から,盛土深部の含水率は降雨とは無関係に,徐々に増加していることが確認できる。これは盛土 材料に含まれる間隙水が盛り立てによる位置水頭の違いから,下方へと再分布することが原因と考えら れる。

図-4.2.8は、2016年6月の含水率変動である。図-4.2.7と比較すると、全体的に含水率が増加していることが確認できる。降雨によって盛土表面から浸透した雨水は徐々に下方に向かって流れ、法尻

から排水されることが想定される。つまり,浸透面に比べて排出面が小さいことから,排水に比べて浸 透は容易に生じる。日本の降水頻度下では,盛土は完成直後より含水率が増加傾向を示しやすいのでは ないかと考えられる。図ー4.2.8 中でもその傾向が明らかである。図ー4.2.8(a)中 3ch は,降雨によっ て急激に含水率が増加するものの,降雨停止後は徐々に含水率が低下し,元の含水率に戻るのに5日程 を要している。結果的に6月全体では含水率が漸増している。一般的には,浸透雨水が盛土最深部に到 達するのは困難であり,図ー4.2.8(b)中1ch は,降雨とは無関係に一定の値を示している。しかしなが ら,ここに示されるような頻度の降雨があり総浸透量が大きくなると,6月25日頃のように浸透水が盛 土再深部にまで到達するようになるのが分かる。

図-4.2.9は、2016年9月の計測結果である。9月に台風が来襲し、図の様に日雨量で示すと大きく

図-4.2.10 サクションの経時変化(2016年9月)

はないものの,20日~26日頃にかけて複数回の高強度の降雨があった。8月に降雨がほとんどなかった ことから,台風前の含水率は図-4.2.8に比べると全体的に低くなっている。しかしながら,短期間で の高強度降雨の繰り返しにより含水率がかなり高くなっている。しかしながら,この様に降雨強度が大 きくても総雨量が小さければ,盛土最深部には浸透水が到達しないことが分かる。図-4.2.10は、同じ 9月のテンシオメーターの計測結果である。図-4.2.9では、月前半の小さな雨では含水率の変化はほ とんど表れていないにもかかわらず、テンシオメーターは降雨のない状態ではサクションの増加を、降 雨によってサクションが消失することを表している。この様な含水率とサクションの計測値の挙動の違 いは、計測器が持つ感受性の違いもあるが水分特性曲線形状が大きく影響していると考えられる。サク ション~含水率関係を示す水分特性曲線はS字形状を示すことが知られているが、低サクション域では 含水率変化に対するサクションの変化率が大きいため、サクションの方が大きく変動する。全体的に法 肩に近い程、大きなサクションを示し、法尻付近は小さなサクションを示しており、解析結果で示した ように法尻に浸透水が集中することが示唆される。月後半の複数回の台風来襲時には、ほとんどサクシ ョンが発揮されていないことも確認できる。

図-4.2.11,図-4.2.12にスラグ混合土における2016年6月および9月の含水率の計測結果を示す。 スラグ混合土は粒度改善効果が発揮され,盛土完成時の原位置透水試験では,建設残土(6.2×10⁻⁹m/sec) よりも透水係数が高い(スラグ混合土 B で 6.4×10⁻⁶m/sec)結果であった。透水係数の違いによって,盛土 深部への雨水到達傾向が異なる。スラグ混合土 A では,総降雨量が大きくなる6月だけでなく,建設残 土では見られなかった9月にも盛土深部の含水率が増加している。一方,スラグ混合土 B では6月,9 月とも盛土深部への雨水到達は小さい。この結果から,透水係数は、スラグ混合土 A>建設残>スラグ 混合土 B と推察され,盛土完成時の原位置透水試験結果とは異なる。この原因は,盛土内での透水係数 の不均一性や,異方性,盛土供用中の透水係数変化などが考えられるが,全体的な浸透挙動傾向は建設 発生土と同じであると言える。

(a) スラグ混合土 A

(b) スラグ混合土 B 図-4.2.11 含水率の経時変化(2016 年 6 月)

(b) スラグ混合土 B 図-4.2.12 含水率の経時変化(2016年9月)

4.2.2 盛土造成地における地盤の振動特性

平成23年3月11日に発生した東北地方太平洋沖地震により,宮城県を中心に宅地造成地において大きな被害が生じた。その後,各地方自治体は東海・東南海地震に備えて,市民の防災意識を高め,被害軽減を目的として,大規模盛土造成マップを公開している。

本研究は、新規の大規模造成地として「兵庫県猪名川町」,既設の大規模造成地として「和歌山県和 歌山市」のサイトで常時微動特性を調査するとともに、測定結果から得られて H/V スペクトルのピーク 値と盛土の高さの関係から盛土の振動特性を検討した。なお今回実施した 2 地点の内,猪名川町大規模 盛土については、現在盛土作業が進行しており、盛土前の微動観測も実施しており、将来的には盛土前 後、若齢期、数十年後の振動特性等の研究に寄与できると考えている。

常時微動とは**図-4.2.13** に示すように,遠くの振動源から地面を伝わってくる揺れであり,人間には 感じないほどの微小な振動である。こういった波はおおむね表面波によるといわれ,地盤の特性に応じ て振動しているため,計測された常時微動は付近の地盤の特性を反映したものとなっている。

図-4.2.13 常時微動の振動源

常時微動観測で得られた水平方向計測波形のフーリエ振幅スペクトルと鉛直方向計測波形のフーリ エ振幅スペクトルの比(以後 H/V スペクトル)は表面波(レーリー波)の H/V 振幅スペクトルの周波数特性 と似ていることが知られている。また、レーリー波の H/V 振幅スペクトルと実体波の周波数伝達関数の ピーク周期はほぼ一致するといわれており、このことから常時微動によって求められる H/V スペクトル のピーク周波数は実体波の伝達関数のピーク周波数と概ね一致し、その大小は基盤深さに対応している と考えることができる(図-4.2.14)。

また、常時微動観測結果から得られる H/V スペクトルのピーク周期は、地盤内における地震動の増幅 の特性を表すサイト増幅特性のピーク周期とほぼ一致すると考えられ¹⁾、実際に多くの観測事実がそれ を証明している。なお、常時微動の H/V スペクトルでは、増幅倍率の大きさそのものに物理的な根拠は ないため定量的な評価は困難であるが、強震観測点と対象地点との H/V スペクトルが、形状も含めてほ ぼ一致していれば、サイト増幅特性もほぼ同程度であると見なすことができると考えられる。

図-4.2.14 サイト増幅特性やH/Vスペクトル比と深部地盤構造との関係

観測に用いる振動計を図ー4.2.15に示す。振動計は白山工業(株)製JU210(k-net02と同一性能)を使用した。観測の方法は、地表面に振動計を設置し、水平2 成分(NS方向・EW 方向)と鉛直1成分の計3成分の 振動測定を行った。サンプリング周波数は100Hzとし、11分間以上の観測を実施した。

図-4.2.15 常時微動観測に用いた機器

(1) 猪名川町大規模盛土調查

1) 調査地の概要

調査地は,兵庫県猪名川町の丘陵地であり,丘陵部を切土し,沢部を最大45m程度で盛土する大規模 造成地である。図-4.2.16に調査地の平面図,図-4.2.17に計画横断図(代表)を示す。

土工事(切土・盛土)は、平成29年7月から開始しており、平成31年6月頃に完了する計画である。 そのため、今回の報告は、盛土前と盛土中(2回)の計測結果であるが、当サイトは将来的に盛土後、 更には供用後の経過における盛土の振動特性の研究の場として期待されている。

図-4.2.16 調査地の平面図

図-4.2.17 調査地付近の横断図(代表)

2) 常時微動の測定結果

本ケーススタディでは、盛土部の代表的な16点を設定し、常時微動測定を盛土前に1回、盛土施工中 に2回の計3回実施した。常時微動の測定方法ならびに結果の整理法については参考文献²⁾に従って実施 している。表-4.2.1に調査内容の概要、図-4.2.18に現地微動計測状況の写真を示す。

番号	測定日	施工状況	試験数 ^{※2} (地点)	調査員 (人)
1	平成29年12月5日	盛土前※1	16	4
2	平成30年6月23日	盛土中	16	4
3	平成30年11月18日	盛土中	18	5

表-4.2.1 調査内容の概要

※1:盛土施工は平成29年7月から開始しているが、調査地の施工は12月以降から開始している。

※2:施工状況に応じて適宜,試験位置および試験数を変更した。

平成 29 年 12 月 5 日計測状況

平成 30 年 6 月 23 日計測状況

平成 30 年 11 月 18 日計測状況

図-4.2.18 現地微動計測状況

測定箇所を図ー4.2.19,代表的な計測結果のグラフを図ー4.2.20,計測結果の一覧表を表ー4.2.2及

び表-4.2.3に示す。

計測箇所のH/Vスペクトルのピーク周波数は,盛土施工前の平成29年12月5日では5~10Hzと範囲が広く,比較的高い周波数が現れる地点が多く確認された。

施工中(盛土中)の平成30年6月23日と平成30年11月18日の計測結果は、地点により盛土の状況が異なるため、以降にH/Vスペクトルピーク値と盛土層厚の関係として報告する。

図-4.2.19 計測位置図

図-4.2.20 常時微動の計測結果グラフ(周波数-H/V):代表(No.4)

中成30年12月5日 甲成30年12月5日 甲成30年11月18日 調整 第5.9 m 其地堂高 100.6 m 講地愛高 m m 15 第5.9 m 月地堂高 100.6 m 講地愛高 m m 14 15 peak 5.2 m 11 11.6 las peak m m 1018 第二章 0.0 m 第二章 0.0 m 11.1 las peak m m 1018 第振端高 m 万.1 m 法数地流高 100.6 m 法状地流高 9.8.0 m 111 15 peak m 万.1 m 所 5.5 m m 10.0.7 m 10.0.7 m 121 Saga 9.3.1 m 防艇電 9.5.5 m m 10.0.0 m m 10.0.0 m 131 peak 5.3.7 m 124 peak 10.1.1 lat 131 peak 10.0.1 m 10.0.1 m <th>Point No</th> <th colspan="8">Date</th> <th></th>	Point No	Date								
「秋秋四菜、「小豆、「小豆、「小豆、「小豆、「小豆、「小豆、「小豆、「小豆、「小豆、「小豆	T UNITE IND.	平成2	29年12月5日		平成	30年6月23日		平成30)年11月18日	
目標協商 99.5 m 原態意面 99.5 m 原態意面 m 11 speak 0.2 H 14 peak 7.3 Hz 15 peak Hz 21d peak - Hz 14d peak 7.3 Hz 15 peak Hz 21d peak - Hz 14d peak 7.3 Hz 15 peak Hz 1016 明確 - Hz 100.6 m 35 % mã 96.0 m 115 peak m #25 % mã 95.3 m 5 % mã 96.0 m 116 meak Hz 100.6 m 35 % mã 96.3 m 101.0 m 116 meak Hz 100.0 m - Hz 101.0 m 101.0 m 115 peak 9.3 m #27 % mã 100.8 m 100.8 m 101.0 m 101.0 m 115 peak 9.3 m #28 % mã 100.0 m #27 m 101.0 m 101.0 m 115 peak 9.3 m #28 % mã 100.0 m 111 Hz 15 peak 101.0 m 115 peak 9.3 m #28 % mã 100.0 m		試験地盤高	95.9	m	試験地盤高	100.6	m	試験地盤高		m
単上厚 0.0 m 単上厚 4.7 m 強土厚 1st peak m 2nd peak -5.32 H2 1st peak 7.31 H2 1st peak H2 2nd peak		原地盤高	95.9	m	原地盤高	95.9	m	原地盤高		m
U1 Ist peak 5.32 Hz Ist peak 7.31 Hz Ist peak Hz 2nd peak - Hz 2nd peak 9.30 Hz 2nd peak Hz gligged m Rigged m Rigged 10.0.5 m Rigged 99.0 m gligged m Rigged m Rigged 95.3 m Rigged 95.3 m Rigged 10.1.0 m gligged 10.0 m Rigged 10.0.1 m	01	盛土厚	0.0	m	盛土厚	4.7	m	盛土厚		m
2nd peak - Hz And peak 9.20 Hz And peak Hz other Wither Wither Wither Wither Wither Wither 0116 原想整流 m State 95.5 m State 95.5 m 1st peak Hz 1st peak Hz 1st peak 95.5 m State 95.7 m State 95.7 m State 95.7 m State 2.71 m 2 1st peak 2.71 m 2 2 1st peak 2.71 m 2 1st peak 3.77 1z 2 1z 2 1z	01	1st peak	5.32	Hz	1st peak	7.31	Hz	1st peak		Hz
other 明確 other やや不明確 other Pieza 98.9 Pieza 99.5 m Pieza 99.5 m 018		2nd peak	-	Hz	2nd peak	9.30	Hz	2nd peak		Hz
就要整面高 内 引移地型高 95.9 所 影地型高 95.0 n 日本 「日本 「日本 「日本 15.0 「日本 95.0 n 第地型高 95.0 n 日本 「日本 「日本 「日本 95.0 m 第地型高 95.3 m 第地型高 10.0 m 10.0		other	明確		other	やや不明確		other		
原地盤高 町 原地型高 95.5 m 原地型高 95.6 m 原地型高 95.6 m 115 peak Hz 15 tpeak 4.7 m 高土厚 2.1 m 2nd peak Hz 15 tpeak - Hz 2 nd peak - Hz 2nd peak 95.3 m 両様地型高 95.3 m 両地型高 95.7 m 15 tpeak 5.37 Hz 15 tpeak 95.5 m 西土厚 5.5 m 5.1 m 5.7 m 15 tpeak 5.37 Hz 15 tpeak 10.1 m Rubach 96.6 Hz 2.1 m 7.7 Hz 2nd peak - Hz 2.nd peak - Hz 2.nd peak 9.6 m Hz 7.7 m 15 tpeak - S.17 Hz 15 tpeak 10.1 m Rubach 9.6 m Hz 1.1 m 1.1 m </td <td></td> <td>試験地盤高</td> <td></td> <td>m</td> <td>試験地盤高</td> <td>100.6</td> <td>m</td> <td>試験地盤高</td> <td>98.0</td> <td>m</td>		試験地盤高		m	試験地盤高	100.6	m	試験地盤高	98.0	m
副主席 四 第上方 4.7 所 第上方 2.1 mail 第上方 2.1 mail 第上方 7.44 Hz 1st peak 3.77 Hz 20her other 978 other 978 other 978 other 978 22 「原地登高 95.3 所 原地登高 95.0 Hz 15.7 Hz		原地盤高		m	原地盤高	95.9	m	原地盤高	95.9	m
UB Ist peak Ist peak Ist peak 7.44 Hz Ist peak 3.77 Hz 2nd peak	010	盛土厚		m	盛土厚	4.7	m	盛土厚	2.1	m
2nd peak 内古 Hz 2nd peak - Hz other 明確 other 明確 0000 前用 前用 原地盤高 95.3 雨 目 127.0 n 127.0 n 13.0 m 活験地盤高 101.5 m 12	01B	1st peak		Hz	1st peak	7.44	Hz	1st peak	3.77	Hz
other 明確 時確 明確 明確 明確 武陵地盛高 95.3 m 高地盤高 100.8 m 試験地盛高 101.0 m 福士厚 0.0 m 露土厚 55.3 m 高地盤高 95.3 m 24 24 0.0 m 露土厚 55.5 m 富土厚 5.7 m 13 tpeak -12 27 dpeak -12 27 dpeak 5.7 m 34 地磁高 96.0 m 方岐電高 106.5 m 142 24 dpeak 5.7 m 34 地磁高 96.0 m 所地磁高 106.5 m 142 14 tpeak 5.0 m 3.0 m 64 世 (10 m) 34 地磁高 10.1 m 142 14 tpeak 3.0 m 3.0 m 13 tpeak 6.5 m Hz 15 tpeak -14 z 14 tpeak 3.0 m 14 tpeak 10.1 m 15 m 13 tpeak 10.1 m 13 tpeak 3.0 m 3.0		2nd peak		Hz	2nd peak	-	Hz	2nd peak	-	Hz
		other			other	明確		other	明確	
周地盤高 95.3 m 原地盤高 95.3 m 原地盤高 95.3 m 藤土厚 5.7 m a 15 peak 5.7 m 第 第 7.7 m 7.7 m 15 peak 5.7 m 15 peak 10.11 Hz 15 peak 5.6 Hz 21 peak - Hz 2nd peak - Hz 2nd peak 5.7 m 31 数や地窓高 96.0 m 原地総高 10.05 m 所 所地総高 9.6 0 m 31 数 か 9.6 0 m 31 数 か 9.6 0 m 31 数 か 9.6 0 m 31 数 か 9.6 0 m Si 数 m 9.7 0 m Si m 9.6 0 m Si m 9.6 0 m 10.0 m Si m 10.0 m Si m 10.0 m 10.0 m 10		試験地盤高	95.3	m	試験地盤高	100.8	m	試験地盤高	101.0	m
健土厚 0.0 m 盛土厚 5.5 m 盛土厚 5.7 m 1st peak -5.37 Hz 1st peak 10.11 Hz 1st peak 5.74 Hz 2d peak - Hz 2nd peak -742 2nd peak 5.74 Hz 016 やや不明確 other 不明確・右上り other 明確 5.74 Hz 135 - HZ 2nd peak 5.74 Hz 2nd peak 5.74 Hz 145 - HZ 2nd peak -5.74 Hz 15.7 m 5.57 m 145 Peak - HZ 15.7 m 5.57 m 3.02 Hz 2nd peak - HZ 1st peak 3.02 Hz 3.02 Hz 2nd peak 10.15 m Kikwisa 113.0 m Kikwisa 12.0 m Rwisa 101.5 m Kikwisa 101.5 m Kikwisa 12.20 m 12 of peak 2.28 Hz 15 m Kikwisa 12.01 m 15 m 14 2nd peak 10.0 m Kikwisa 100.5 m Kikwisa		原地盤高	95.3	m	原地盤高	95.3	m	原地盤高	95.3	m
0.2 1st peak 5.37 Hz 1st peak 10.11 Hz 2nd peak 5.06 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 5.06 Hz 016 中やや不明確 other 不明確 5.10 m 原地盤高 102.0 m 03 重比型 0.0 m 歴土学 10.9 m 歴土学 3.0 m 13 to peak - Hz 1st peak 3.02 Hz 2nd peak - Hz 1st peak 3.02 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 3.02 Hz 2nd peak - Hz 2nd peak 3.02 Hz 2nd peak 3.02 Hz 2nd peak 10.15 m 原地盤高 101.5 <m< td=""> m Mz beak 3.02 Hz 2nd peak 10.23 m Mz beak 10.01 M Mz beak 1.01.5<m< td=""></m<></m<>	02	盛土厚	0.0	m	盛土厚	5.5	m	盛土厚	5.7	m
2nd peak - Hz 2nd peak - Hz 2nd peak 5.74 Hz other やや不明確 0ther 不明確 右上り 0ther 明確 127.0 m 個 小台湾 96.0 雨炭地盤高 96.0 円 0.0 雨 11.0 雨炭地盤高 10.0 日 11.0 雨炭ш盤高 10.0 11.0 <t< td=""><td>02</td><td>1st peak</td><td>5.37</td><td>Hz</td><td>1st peak</td><td>10.11</td><td>Hz</td><td>1st peak</td><td>5.06</td><td>Hz</td></t<>	02	1st peak	5.37	Hz	1st peak	10.11	Hz	1st peak	5.06	Hz
other やや不明確 不明確 + 五上り other 明確 諸級地盤高 96.0 m 試験地盤高 96.0 m ご教地盤高 96.0 m ご 原地盤高 96.0 m ご 97.0 m ご 97.0 m ご 97.0 m 37.0 m 3		2nd peak	-	Hz	2nd peak	-	Hz	2nd peak	5.74	Hz
調整地盤高 96.0 m 試験地盤高 106.9 m 試験地盤高 127.0 m 6 原地盤高 96.0 m 原地盤高 96.0 m 原地盤高 96.0 m 1st peak 6.59 Hz 1st peak - Hz 1st peak 30.0 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 30.2 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 3.62 Hz other 明確 other 不明確・右上り other 明確 3.62 Hz 2nd peak 101.5 m 原地盤高 101.5 m 原地盤高 101.5 m 3.62 Hz 2nd peak 101.5 m 原地盤高 101.5 m 原地盤高 101.5 m 3.29 Hz 2nd peak 2.28 Hz 2nd peak 5.10 Hz 1st peak 3.29 Hz 2nd peak 102.3 m 原地盤高 102.5 m 所地燈高 100.5 m 原地盤高 102.4 m 明確 other 9.6 Hz 2.04 peak 10.2 M 1st peak		other	やや不明確		other	不明確・右上り)	other	明確	
雨地盤高 96.0 m 雨地盤高 96.0 m 雨地盤高 96.0 m ax 上厚 0.0 m 西土厚 10.9 m 西土厚 31.0 m 145 peak 6.59 hL 115 peak - Hz 2nd peak - Hz 2nd peak 3.02 Hz duba - Hz 2nd peak - Hz 2nd peak 3.02 Hz duba - Hz 2nd peak - Hz 2nd peak 3.02 Hz duba - Hz 2nd peak 101.5 m 所地盤高 110.5 m 所地盤高 110.5 m ad 上厚 0.0 m 盛土厚 11.5 m 磁土厚 2.29 Hz cher 明確 other 明確 other 9100 010.5 m diff 1102.3 m 所地盤高 102.3 m 所地盤高 100.5 m guba 102.3 m 所地盤高 102.3 m 所地盤高 100.5 m guba - Hz 1010.8 m 100.5 m 100.5 m		試験地盤高	96.0	m	試験地盤高	106.9	m	試験地盤高	127.0	m
福土厚 0.0 m 盛土厚 10.9 m 癌土厚 31.0 m 1st peak - Hz 1st peak - Hz 1st peak 3.02 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 3.02 Hz 0ther 明確 other Rrefered 3.02 Hz 2nd peak 3.02 Hz 0ther 明確 other Rrefered 0.0 m 高数地盤高 101.5 m 所地盤高 101.5 m 所地盤高 101.5 m 万法地盤高 101.5 m 万法地盤高 101.5 m 万士厚 2.02 Hz 1.0 m 0.0 m <td></td> <td>原地盤高</td> <td>96.0</td> <td>m</td> <td>原地盤高</td> <td>96.0</td> <td>m</td> <td>原地盤高</td> <td>96.0</td> <td>m</td>		原地盤高	96.0	m	原地盤高	96.0	m	原地盤高	96.0	m
1st peak 6.59 Hz 1st peak - Hz 1st peak 3.02 Hz 2nd peak - Hz 2nd peak 3.02 Hz 04 142 2nd peak - Hz 2nd peak 3.02 Hz 15 m 142 2nd peak - Hz 2nd peak 3.02 Hz 16 15 m 16 m 16 m 3.02 Hz 16 16 16 m 16 m 16	03	盛土厚	0.0	m	盛土厚	10.9	m	盛土厚	31.0	m
2nd peak - Hz 2nd peak - Hz 2nd peak 3.62 Hz other 明確 other 不明確・右上り other 明確 0ther 明確 試験地盤高 101.5 m 原地盤高 101.5 m 原地盤高 101.5 m Gut 0.0 m 磁土厚 11.5 m 磁土厚 2.7.0 PK Gut 9.88 HZ 1st peak 5.10 HZ 1st peak 2.9.2 HZ Conter 明確 other 明確 other 明確 0ther 明確 0ther 明確 0ther 102.3 m 試験地盤高 102.3 m 試験地盤高 102.3 m Jill 104.5 m Jill 104.5 m Jill 102.3 m Jill 104.5 m Jill 102.3 m Jill 104.5 m Jill 111.7 m Jill 111.7 M Jill 111.7 M </td <td>05</td> <td>1st peak</td> <td>6.59</td> <td>Hz</td> <td>1st peak</td> <td>-</td> <td>Hz</td> <td>1st peak</td> <td>3.02</td> <td>Hz</td>	05	1st peak	6.59	Hz	1st peak	-	Hz	1st peak	3.02	Hz
other 明確 other 不明確・右上り other 明確 調整地盤高 101.5 m 請疑地盤高 113.0 m 試験地盤高 127.0 m m 個 類型地盤高 101.5 m 原地盤高 102.5 m G 102.3 m Istpeak 2.29 Hz 120 mm 120 mm <t< td=""><td></td><td>2nd peak</td><td>-</td><td>Hz</td><td>2nd peak</td><td>-</td><td>Hz</td><td>2nd peak</td><td>3.62</td><td>Hz</td></t<>		2nd peak	-	Hz	2nd peak	-	Hz	2nd peak	3.62	Hz
išķ地盤高 10.5 m 原地盤高 10.5 m 原地 11.5 m 盛上厚 0.0 m 盛上厚 10.5 m ボタッ		other	明確		other	不明確・右上り)	other	明確	
原地盤高 101.5 m 原地盤高 101.5 m 原地盤高 101.5 m 原地盤高 101.5 m 磁土厚 0.0 m 磁土厚 1.1.5 m 価 盈土厚 25.5 m Ist peak 9.88 Hz Ist peak 5.10 Hz Ist peak 2.92 Hz other 明確 other 明確 other 明確 0ther 明確 flighuman 102.3 m 試験地盤高 102.5 m 試験地盤高 100.5 m 個本里厚 0.0 m 磁土厚 0.2 m 原地盤高 102.3 m 個量 0.0 m 磁土厚 0.2 m 原地盤高 102.3 m 13t peak 7.78 Hz 1st peak Hz 1st peak Hz 2nd peak - Hz 2nd peak - Hz 14beak 140.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 101.7 m 1stpeak <td></td> <td>試験地盤高</td> <td>101.5</td> <td>m</td> <td>試験地盤高</td> <td>113.0</td> <td>m</td> <td>試験地盤高</td> <td>127.0</td> <td>m</td>		試験地盤高	101.5	m	試験地盤高	113.0	m	試験地盤高	127.0	m
磁土厚 0.0 m 磁土厚 11.5 m 磁土厚 25.5 m 1st peak 9.88 Hz 1st peak 5.10 Hz 1st peak 3.29 Hz 2nd peak 2.28 Hz 2nd peak 6.57 Hz 2nd peak 3.29 Hz other 明確 other 明確 0ther 明確 0ther 減除地盤高 102.3 m 減除地盤高 102.5 m 減除地盤高 100.5 m 減%地盤高 100.5 m 瘤生厚 0.0 m 磁土厚 0.2 m 減%地盤高 102.3 m 減%地盤高 102.3 m 1st peak 7.78 Hz 1st peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 1st peak 11.7 m 原地盤高 104.5 m 減%地盤高 106.4 m 減%地盤高 101.7 m 原地盤高 104.5 m 原地盤高 105.4 m 減%地盤高 104.5 m 1st peak 5.2 Hz 1st peak 8.75 Hz 1st peak 5.1 Hz 1st peak <td></td> <td>原地盤高</td> <td>101.5</td> <td>m</td> <td>原地盤高</td> <td>101.5</td> <td>m</td> <td>原地盤高</td> <td>101.5</td> <td>m</td>		原地盤高	101.5	m	原地盤高	101.5	m	原地盤高	101.5	m
1st peak 9.88 Hz 1st peak 5.10 Hz 1st peak 3.29 Hz 2nd peak 2.28 Hz 2nd peak 6.57 Hz 2nd peak 2.21 Hz other 明確 other 明確 0ther 明確 0ther 明確 「該地盤高 102.3 m 原地盤高 102.3 m 原地盤高 102.3 m 「該車車 102.3 m 原地盤高 102.3 m 原地盤高 102.3 m 「該車車 7.78 Hz 1st peak - Hz 1st peak 6.00 Hz 2nd peak - Hz 1st peak 6.00 Hz 1nt m<	04	盛土厚	0.0	m	盛土厚	11.5	m	盛土厚	25.5	m
2nd peak 2.28 Hz 2nd peak 6.57 Hz 2nd peak 2.92 Hz other 明確 other 明確 other 明確 other 明確 jawe 102.3 m 試験地盤高 102.3 m 試験地盤高 100.5 m gatp 0.0 m 二年 0.2 m 益上寧 102.3 m 原地盤高 102.3 m 活動 の # # # # # # ##		1st peak	9.88	Hz	1st peak	5.10	Hz	1st peak	3.29	Hz
other 明確 other 明確 other 明確 $ [$		2nd peak	2.28	Hz	2nd peak	6.57	Hz	2nd peak	2.92	Hz
i i										
原地盤高 102.3 m 四 $a \pm p = a$ 0.0 m 磁土厚 0.2 m 磁土厚 -1.8 m m 1st peak 7.78 Hz 1st peak - Hz 1st peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz $other$ 明確 0ther 7nd 7cm 7cm 7cm 7cm $g \pm a p$ 0.0 m 磁土厚 0.9 m $4 \pm p$ 7cm 7cm 1st peak 5.29 Hz 1st peak 8.75 Hz 1st peak 5.51 Hz 2nd peak - Hz 2nd peak $- \text{Hz}$ 2nd peak $- \text{Hz}$ 1st peak $9 0.2 \text{ m}$ m m m m m m m m m </td <td></td> <td>other</td> <td>明確</td> <td></td> <td>other</td> <td>明確</td> <td></td> <td>other</td> <td>明確</td> <td></td>		other	明確		other	明確		other	明確	
05 磁土厚 0.0 m 磁土厚 0.2 m 磁土厚 -1.8 m 1st peak 7.78 Hz 1st peak - Hz 1st peak 6.00 Hz 2nd peak - Hz 2nd peak - Hz 1st peak 6.00 Hz istpeak - Hz 2nd peak - Hz 2nd peak - Hz istpeak 0.45 m jikjwulkä 106.5 m m jikjwulkä 101.5 m m jikjwulkä 101.45 m jikjwulkä 101.45 m m jikjwulkä 101.45 m jikjwulkä 102.7 m jikjwulkä 102.7 m jikjwulkä 102.2 m		other 試験地盤高	明確 102.3	m	other 試験地盤高	明確 102.5	m	other 試験地盤高	明確 100.5	m
1st peak 7.78 Hz 1st peak - Hz 1st peak 6.00 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz other 明確 other 不明確・右下り other 明確 - Hz 源地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 磁土厚 0.0 m 磁土厚 0.9 m M 歴土厚 7.2 m 1st peak 5.29 Hz 1st peak 8.75 Hz 1st peak 5.51 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 1st peak 10.0 m		other 試験地盤高 原地盤高	明確 102.3 102.3	m m	other 試験地盤高 原地盤高	明確 102.5 102.3	m m	other 試験地盤高 原地盤高	明確 100.5 102.3	m m
2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz other 明確 other n 就験地盤高 104.5 m 就験地盤高 101.7 m 原地盤高 104.5 m 原地盤高 104.5 m 就験地盤高 101.7 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 6 盛土厚 0.0 m 盛土厚 0.9 m 盛土厚 104.5 m 6 日 peak - Hz 2nd peak 5.51 Hz 7 1st peak 5.29 Hz 1st peak 8.75 Hz 1st peak 5.51 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz 07 第 90.2 m 就験地盤高 90.2 m 就験地盤高	05	other 試験地盤高 原地盤高 盛土厚	明確 102.3 102.3 0.0	m m m	other 試験地盤高 原地盤高 盛土厚	明確 102.5 102.3 0.2	m m m	other 試験地盤高 原地盤高 盛土厚	明確 100.5 102.3 -1.8	m m m
other 明確 other 不明確・石下り other 明確	05	other 試験地盤高 原地盤高 盛土厚 1st peak	明確 102.3 102.3 0.0 7.78	m m Hz	other 試験地盤高 原地盤高 盛土厚 1st peak	明確 102.5 102.3 0.2 -	m m m Hz	other 試験地盤高 原地盤高 盛土厚 1st peak	明確 100.5 102.3 -1.8 6.00	m m m Hz
試験地盤高 104.5 m 試験地盤高 105.4 m 試験地盤高 111.7 m 06 \overline{R} 地盤高 104.5 m \overline{R} 地盤高 104.5 m \overline{R} 地盤高 104.5 m 06 \overline{A} \overline{P} 0.0 m \overline{M} \overline{M} \overline{R} </td <td>05</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak</td> <td>明確 102.3 102.3 0.0 7.78 -</td> <td>m m Hz Hz</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak</td> <td>明確 102.5 102.3 0.2 - -</td> <td>m m Hz Hz</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak</td> <td>明確 100.5 102.3 -1.8 6.00 -</td> <td>m m Hz Hz</td>	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak	明確 102.3 102.3 0.0 7.78 -	m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak	明確 102.5 102.3 0.2 - -	m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak	明確 100.5 102.3 -1.8 6.00 -	m m Hz Hz
周地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 原地盤高 104.5 m 06	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other	明確 102.3 102.3 0.0 7.78 - 明確	m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other	明確 102.5 102.3 0.2 - - 不明確・右下り	m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other	明確 100.5 102.3 -1.8 6.00 - 明確	m m Hz Hz
06 磁土厚 0.0 m 磁土厚 0.9 m 磁土厚 1.2 m 1st peak 5.29 Hz 1st peak 8.75 Hz 1st peak 5.51 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz other 明確 other やや不明確 other 明確 . Hz 07 13t§地盤高 90.2 m 原地盤高 91.2 m 試験地盤高 98.5 m 原地盤高 90.2 m 原地盤高 91.2 m 試験地盤高 98.5 m 07 <	05	other 試験地盤高 原地盤高 盤土厚 1st peak 2nd peak other 試験地盤高	明確 102.3 102.3 0.0 7.78 - 明確 104.5	m m Hz Hz m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高	明確 102.5 102.3 0.2 - 不明確・右下り 105.4	m m Hz Hz J	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高	明確 100.5 102.3 - 1.8 6.00 - 明確 111.7	m m Hz Hz m
Ist peak 5.29 Hz Ist peak 8.75 Hz Ist peak 5.51 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz other 明確 other other やや不明確 other 明確 1 頭膝地盤高 90.2 m 試験地盤高 91.2 m 試験地盤高 98.5 m 1 頭地盤高 90.2 m 原地盤高 90.2 m 原地盤高 90.2 m 1 </td <td>05</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 成地盤高</td> <td>明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5</td> <td>m m Hz Hz m</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高</td> <td>明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5</td> <td>m m Hz Hz) m m</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高</td> <td>明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 2</td> <td>m m Hz Hz m</td>	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 成地盤高	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5	m m Hz Hz m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5	m m Hz Hz) m m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 2	m m Hz Hz m
2nd peak - Hz 2nd peak 0ther 9mæ 07	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.00	m m Hz Hz m m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高	明確 102.5 102.3 0.2 - - 不明確・右下・ 105.4 104.5 0.9 0.2	m m Hz Hz m m m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2	m m Hz Hz m m m
Other 明fm Other P47-Knjm Other 同相 i i	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 感土厚 1st peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29	m m Hz Hz m m Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75	m m Hz Hz) m m Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 感土厚 1st peak 2	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51	m m Hz Hz m m Hz
副験地盤高 90.2 m 試験地盤高 91.2 m 試験地盤高 98.3 m 原地盤高 90.2 m 原地盤高 90.2 m 原地盤高 90.2 m 原地盤高 90.2 m 原地盤高 90.2 m m 個 盛土厚 0.0 m 盛土厚 1.0 m 盛土厚 8.3 m 1st peak 10.10 Hz 1st peak - Hz 1st peak 6.65 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz other - Hz 2nd peak - Hz 2nd peak - Hz other - Hz 2nd peak - Hz 2nd peak - Hz other - - Hz 2nd peak - Hz 1 <t< td=""><td>05</td><td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 感土厚 1st peak 2nd peak</td><td>明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - HTM</td><td>m m Hz Hz m m Hz Hz</td><td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 感土厚 1st peak 2nd peak</td><td>明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - -</td><td>m m Hz Hz) m m Hz Hz</td><td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak</td><td>明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - -</td><td>m m Hz Hz m m Hz Hz</td></t<>	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 感土厚 1st peak 2nd peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - HTM	m m Hz Hz m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 感土厚 1st peak 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - -	m m Hz Hz) m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - -	m m Hz Hz m m Hz Hz
所地盤高 90.2 m 原地盤高 90.2 m 原地盤高 90.2 m 原地盤高 90.2 m 原地盤高 90.2 m 月かし盤高 月かし 月かし盤高 月かし 月かし <td>05</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 加度土厚 1st peak 2nd peak</td> <td>明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>m m Hz Hz m m Hz Hz</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 1st peak 2nd peak 2nd peak</td> <td>明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確</td> <td>m m Hz Hz m m Hz Hz</td> <td>other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 愿土厚 1st peak 2nd peak other 1st peak</td> <td>明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確</td> <td>m m Hz Hz m m Hz Hz</td>	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 加度土厚 1st peak 2nd peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	m m Hz Hz m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 1st peak 2nd peak 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確	m m Hz Hz m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 愿土厚 1st peak 2nd peak other 1st peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確	m m Hz Hz m m Hz Hz
07 磁工序 0.0 m 磁工序 1.0 m 磁工序 0.0 m 6.5 m m 1st peak 10.10 Hz 1st peak - Hz 1st peak - Hz 1st peak - Hz 2nd peak - Hz Mu	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 加 st peak 2nd peak 2nd peak other 31號陝地盤高	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2	m m Hz Hz M m Hz Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 G動型 2nd peak 2nd peak 2nd peak 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 0.0 2	m m Hz Hz m m Hz Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 加 1st peak 2nd peak other 1st peak 2nd peak other 1st peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 00.2	m m Hz Hz m m Hz Hz M
Ist peak 10.10 Hz Ist peak - Hz Ist peak Ist peak - Hz Ist peak - Hz Ist peak - Hz Ist peak	05	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 属土厚 1st peak 2nd peak other 武験地盤高 可能型	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 明確 90.2 90.2 0.0	m m Hz Hz Hz Hz Hz m m	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 原地盤厚 1st peak 2nd peak 2nd peak other 武験地盤高	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 90.2	m m Hz Hz m m Hz Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 Ist peak 2nd peak other Ist peak 2nd peak other 武験地盤高 成地盤高 原地盤高	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2	m m Hz Hz m m Hz Hz Hz
210 peak - n2 210 peak - n2 210 peak - n2 other other other other 749 æ · 4 古 · 0 other 94.5 m 加酸地盤高 89.7 m 試験地盤高 91.1 m 試験地盤高 94.5 m 原地盤高 89.7 m 原地盤高 91.1 m 試験地盤高 94.5 m 原地盤高 89.7 m 原地盤高 91.1 m 試験地盤高 94.5 m 個 監土厚 0.0 m 歴土厚 1.4 m 歴土厚 4.8 m 1st peak 10.30 Hz 1st peak 9.17 Hz 1st peak 7.38 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 6.19 Hz other 明確 other vや不明確 vや不明確 vや不明確 vや不明確 vや不明確 09 m	05 06 07	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 1st peak 2nd peak other 1st peak 2nd peak other 試験地盤高 原地盤高 區址厚 1st peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 0.0 10.10	m m Hz Hz M m Hz Hz M m m	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 腐土厚 1st peak 2nd peak other 試験地盤高 原地盤尾 配 点 短 上厚 1st peak 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0	m m Hz Hz m m Hz Hz Hz m m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 目ま peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65	m m Hz Hz M Hz Hz M Hz Hz
Other Frequencies	05 06 07	other 試験地盤高 原地盤高 整土厚 1st peak 2nd peak other 試験地盤高 晶土厚 1st peak 2nd peak other 动ther 就験地盤高 原地盤高 原地盤高 原地盤高 国東地盤高 1st peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 0.0 10.10	m m Hz Hz m m Hz Hz m m m Hz	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 属土厚 1st peak 2nd peak other 試験地盤高 原地盤 2nd peak other i試験地盤高 属地盤 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0	m m Hz Hz J m m Hz Hz M m m Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 原地盤高 原地盤高 見地盤高 記録地盤高 見ま peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65	m m Hz Hz M Hz Hz Hz Hz Hz
向熱表や温筒 30.3 m Adapted and m 31.1 m Adapted and m 31.3 m Adapted and m 31.1 m Adapted and m 31.3 m Adapted and m 31.1 m Adapted and m 31.3 m Adapted and m 31.1 m Adapted and m 31.3 m Adapted and m 31.1 m Adapted and m 31.3 m Adapted and m Adapted and m Adapted and m Adapted and m M Bubble and m M Bubble and m M	05 06 07	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 a盤土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 星土厚 1st peak 2nd peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 0.0 10.10	m m Hz Hz m m Hz Hz M Hz Hz Hz	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 a盘土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 加力 記載 地盤高 記載 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - -	m m Hz Hz m m Hz Hz m m Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 記載段地盤高 2nd peak other 記録地盤高 名 四 2nd peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - -	m m Hz Hz M m Hz Hz M Hz Hz Hz
の8 通生厚 0.0 m 盛土厚 1.4 m 盛土厚 4.8 m 08 1st peak 10.30 Hz 1st peak 9.17 Hz 1st peak 7.38 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 6.19 Hz other 明確 other やや不明確 other やや不明確 やや不明確 1 1stybuka 89.3 m 試験地盤高 90.0 m 試験地盤高 93.4 m 1 原地盤高 89.3 m 原地盤高 89.3 m 原地盤高 89.3 m 1 新設 89.3 m 原地盤高 89.3 m 原地盤高 89.3 m 1	05 06 07	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 成地里 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 反動 型目 1st peak 2nd peak other 1st peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 0.0 10.10 - 80.7	m m Hz Hz m m Hz Hz Hz Hz	other 試験地盤高 原地盤同 基土厚 1st peak 2nd peak other 試験地盤高 a盘土厚 1st peak 2nd peak other 試験地盤高 原地盤高 加助 就験地盤高 2nd peak 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - - 不明確・右下り	m m Hz Hz m m M Hz Hz Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 感土厚 1st peak 2nd peak other 試験地盤高 原地盤高 愿土厚 1st peak 2nd peak other 試験地盤高 京地盤高 京地盤高 京地盤高 京地盤高 京地盤高 京地盤高 京地盤高 京地盤高 京地盤高 支持 中国 大厚 1st peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5	m m Hz Hz m m Hz Hz Hz Hz
08 血上序 0.0 m 血上序 1.4 m 血上序 4.6 m 1st peak 10.30 Hz 1st peak 9.17 Hz 1st peak 7.38 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak 6.19 Hz other 明確 other やや不明確 other やや不明確 調験地盤高 89.3 m 試験地盤高 90.0 m 試験地盤高 93.4 m 原地盤高 89.3 m 原地盤高 89.3 m 原地盤高 89.3 m 適比厚 0.0 m 盛土厚 0.7 m 盛土厚 4.1 m 1st peak 8.33 Hz 1st peak 8.17 Hz 1st peak 7.32 Hz 2nd peak - Hz 2nd peak - Hz 09 個 1st peak 8.33 Hz 1st peak 8.17 Hz 1st peak 7.32 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz other 明確 other 明確 other 明確 other Hz	05 06 07	other 試験地盤高 原地盤高 整土厚 1st peak 2nd peak other 試験地盤高 as土厚 1st peak other 試験地盤高 原地盤高 原地盤高 原地盤高 加 如 和 如 和 和 和 和 和 和 和 和 和 和 和 和 和	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 0.0 10.10 - 89.7 89.7	m m Hz Hz M m Hz Hz M Hz Hz M m Hz	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 a盘土厚 1st peak 2nd peak other 試験地盤高 原土厚 1st peak 2nd peak other 1st peak 2nd peak other ist peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - 不明確・右下り 91.2 90.2 1.0 - - 不明確・右下り	m m Hz Hz J m m M Hz Hz Hz Hz J m m m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 腐土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 原地盤高 加 東地盤高 記 東中 記 東中 記 原地盤高 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 東中 記 二 厚 二 二 二 二 二 二 二 二 二 二 二 二 二	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7	m m Hz Hz M Hz Hz Hz Hz Hz Hz
100 peak - Hz 101 peak - Hz 2nd peak - Hz 2nd peak 6.19 Hz other 明確 other やや不明確 other やや不明確 0ther やや不明確 調験地盤高 89.3 m 試験地盤高 90.0 m 試験地盤高 93.4 m 原地盤高 89.3 m 原地盤高 89.3 m 原地盤高 89.3 m 盛土厚 0.0 m 盛土厚 0.7 m 盛土厚 4.1 m 1st peak 8.33 Hz 1st peak 8.17 Hz 1st peak 7.32 Hz 2nd peak - Hz 2nd peak - Hz 1st peak 7.32 Hz other 明確 other Hz other Hz 2nd peak - Hz	05 06 07	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 Ist peak 2nd peak other 1st peak other 試験地盤高 感土厚 1st peak other 試験地盤高 原地是厚 1st peak other 就験地盤高 原地是厚 1st peak other 就験地盤高 原本上厚 1st peak other 点式験地盤高 原本上厚 1st peak 2nd peak other 1st peak 2nd peak other 1st peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 0.0 10.10 - - 89.7 89.7 0.0	m m Hz Hz M m Hz Hz Hz Hz M m Hz Hz	other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 1st peak 2nd peak other 試験地盤高 点地壁 1st peak other 試験地盤高 点型 1st peak other 試験地盤高 点型 1st peak other 式原地盤高 点型 点型 点型 点型 点型 点型 点型 点型 点型 点型	明確 102.5 102.3 0.2 - - 不明確・右下・ 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - 不明確・右下・ 91.1 89.7	m m Hz Hz m m Hz Hz Hz Hz m Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 處土厚 1st peak 2nd peak other 試験地盤高 原地盤高 四 四 四 四 四 四 四 四 四 四 四 四 四	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8	m m Hz Hz M m Hz Hz Hz Hz M m m m m m m
09 明確 0ther やや不明確 0ther やや不明確 01 市 市 やや不明確 0ther やや不明確 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05 06 07 08	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 磁土厚 1st peak 2nd peak other ist peak other Ist peak 2nd peak other Ist peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 0.0 10.10 - 89.7 89.7 89.7 0.0 10.30	m m Hz Hz Hz Hz Hz Hz Hz Hz Hz	other 試験地盤高 原地厚 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 点型 1st peak 2nd peak other 1st peak	明確 102.5 102.3 0.2 - - 不明確・右下・ 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - 不明確・右下・ 91.1 89.7 - 不明確・右下・ 91.1	m m Hz Hz m m Hz Hz M Hz Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 感土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 原地盤高 京地 和 夏 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 日 5 5 5 5 5 5 5 5 5 5 5 5 5	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 7.38	m m Hz Hz M m Hz Hz Hz Hz Hz Hz
09 試験地盤高 89.3 m 試験地盤高 90.0 m 試験地盤高 93.4 m 原地盤高 89.3 m 原地盤高 90.0 m 試験地盤高 93.4 m 盧土厚 0.0 m 盛土厚 0.7 m 盛土厚 4.1 m 1st peak 8.33 Hz 1st peak 8.17 Hz 1st peak 7.32 Hz 2nd peak - Hz 2nd peak - Hz other 明確 other 明確 other nm	05 06 07 08	other 試験地盤高 原地盤高 加 peak 2nd peak other 試験地盤高 加 peak 2nd peak other 1st peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 加 peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 0.0 10.10 - - 89.7 89.7 0.0 10.30	m m Hz Hz m m Hz Hz Hz Hz Hz Hz Hz	other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 底土厚 1st peak 2nd peak other 試験地盤高 就動地 就原地里厚 1st peak 2nd peak other 試験地盤高 点型土厚 1st peak 2nd peak other 試験地盤高 点型土厚 1st peak 2nd peak other 式験地盤高 点型土厚 1st peak 2nd peak other 式動験地盤高 1st peak 2nd peak	明確 102.5 102.3 0.2 - - 不明確・右下・ 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - 不明確・右下・ 91.1 89.7 1.4 9.17	m m Hz Hz M m M Hz Hz M Hz M Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 見 1st peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 7.38 6.19	m m Hz Hz M m Hz Hz Hz Hz Hz Hz
09 原地盤高 89.3 m 原地盤高 89.3 m 原地盤高 89.3 m 直封 0.0 m 盛土厚 0.7 m 盛土厚 4.1 m 1st peak 8.33 Hz 1st peak 8.17 Hz 1st peak 7.32 Hz 2nd peak - Hz 2nd peak - Hz 1st peak - Hz other 明確 other 明確 other Interview	05 06 07 08	other 試験地盤高 原地盤高 加 peak 2nd peak other 試験地盤高 加 peak other 1st peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 90.2 0.0 10.10 - 89.7 89.7 89.7 0.0 10.30 - 明確	m m Hz Hz M m Hz Hz Hz Hz Hz Hz Hz	other 試験地盤高 原地壁厚 1st peak 2nd peak other 試験地盤高 感土厚 1st peak 2nd peak other 試験地盤高 原地壁 和 原地壁 1st peak 2nd peak other 試験地盤高 底土厚 1st peak 2nd peak other 1st peak 2nd peak other	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - マー 不明確・右下り 91.1 89.7 1.4 9.17 - ×や不明確	m m Hz Hz Hz Hz Hz Hz Hz Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 盛土厚 1st peak	明確 100.5 102.3 - 1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 89.7 4.8 7.38 6.19	m m Hz Hz Hz Hz Hz Hz Hz Hz Hz
$09 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	05 06 07 08	other 試験地盤高 原地盤高 加 如 和 如 原 加 如 和 和 和 和 和 和 和 和 和 和 和 和 和	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 0.0 10.10 - 89.7 89.7 89.7 0.0 10.30 - 明確	m m Hz Hz Hz Hz M m Hz Hz Hz M m Hz Hz	other 試験地盤高 原地盤厚 1st peak 2nd peak other 試験地盤高 原並上厚 1st peak 2nd peak other 試験地盤高 感土厚 1st peak 2nd peak other 試験地盤高 底土厚 1st peak 2nd peak other 試験地盤高 底土厚 1st peak 2nd peak other 試験地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 武膝地盤高 二 二 二 二 二 二 二 二 二 二 二 二 二	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - - やや不明確 91.2 90.2 1.0 - - 不明確・右下り 91.1 89.7 1.4 9.17 - やや不明確 9.17	m m Hz Hz m m Hz Hz M Hz Hz m m Hz Hz m m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 腐土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 京地盤高 京地盤高 京地 盤高 夏 北厚 1st peak 2nd peak other 試験地盤高 京 武 歌地盤高 京 武 歌地盤高 京 二 四 四 四 四 四 四 四 四 四 四 四 四 四	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 8.9.7 4.8 7.38 6.19 やや不明確 93.4	m m Hz Hz Hz Hz Hz M m m Hz Hz Hz M m m Hz Hz
09 1st peak 8.33 Hz 1st peak 8.17 Hz 1st peak 7.32 Hz 2nd peak - Hz 2nd peak - Hz 2nd peak - Hz other 明確 other 明確 other 明確 other 明確	05 06 07 08	other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地生厚 1st peak 2nd peak other 截土厚 1st peak 2nd peak other 截土厚 1st peak 2nd peak other 動地盤高 原地里 1st peak 2nd peak other 動地盤高 原地里 1st peak 2nd peak other 動動 動動 動動 動動 動動 動動 動動 動動 動動 動	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.	m m Hz Hz Hz Hz Hz Hz Hz Hz M m Hz Hz Hz m m	other 試験地盤高 原地里厚 1st peak other 試験地盤高 原地里厚 1st peak 2nd peak other 1st peak 2nd peak other 就影地盤高 盛土厚 1st peak 2nd peak other 1st peak 2nd peak other 1st peak 2nd peak other 試験地盤高 原土里 1st peak 2nd peak other 試験地盤高 原土里 1st peak other 試験地盤高 高 盛土厚 1st peak 2nd peak other 武康地盤高 原土里 1st peak 2nd peak other 武康地盤高 原土里 1st peak 2nd peak other 武康地盤高 原土里 1st peak 2nd peak other 記 東本 1st peak 2nd peak other 記 東本 四 四 四 四 四 四 四 四 四 四 四 四 四	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - - やや不明確 91.2 90.2 1.0 - - 不明確・右下り 91.1 89.7 1.4 9.17 - やや不明確 9.17 - やや不明確 9.17 9.14 9.17 -	m m Hz Hz m m Hz Hz M Hz Hz M Hz Hz M m m Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 愿土厚 1st peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 夏山 東地盤高 夏山 東地盤高 原地盤高 原地盤高 夏山 東地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地盤高 原地 四 四 四 四 四 四 四 四 四 四 四 四 四	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 7.38 6.19 やや不明確 93.4 89.3	m m Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz
2nd peak Hz 2nd peak Hz 2nd peak - Hz other 明確 other 明確 other 明確	05 06 07 08	other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原並土厚 1st peak 2nd peak other 型型 1st peak other 型型 1st peak other 型型 1st peak other 型 1st peak other 型 1st peak other 型 1st peak other 型 1st peak other 型 1st peak other 型 1st peak other 型 1st peak other 型 1st peak other 型 1st peak 2nd peak other 型 1st peak 2nd peak other 型 1st peak 2nd peak other 型 1st peak 2nd peak other 型 1st peak 2nd peak other 型 1st peak 2nd peak other 型 1st peak other 型 1st peak other 型 1st peak other 四 四 四 四 四 四 四 四 四 四 四 四 四	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.	m m Hz Hz Hz M m Hz Hz M Hz Hz M m Hz Hz	other 試験地盤高 原地里厚 1st peak other 試験地盤高 原地里厚 1st peak 2nd peak other 2nd peak other 型型型 1st peak 2nd peak other 型型型 1st peak 2nd peak other 型型型 1st peak other 型型型 加度 型型型 加度 型型型 加度 型型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 型型 加度 四 四 四 四 四 四 四 四 四 四 四 四 四	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - - やや不明確 91.2 90.2 1.0 - - 不明確・右下り 91.1 89.7 1.4 9.17 - やや不明確 9.17 - やや不明確 9.17 0.7 0.7	m m Hz Hz m m Hz Hz Hz Hz m m Hz Hz Hz m m m m	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 腐土厚 1st peak 2nd peak other 試験地盤高 愿土厚 1st peak 2nd peak other 試験地盤高 魔土厚 1st peak 2nd peak other 試験地盤高 原地里 1st peak 2nd peak other 試験地盤高 原地里 京地里 京 北厚 1st peak 2nd peak other 試験地盤高 原地里 京 北里 1st peak 2nd peak other 試験地盤高 原地里 京 二 三 二 二 二 二 二 二 二 二 二 二 二 二 二	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 7.38 6.19 やや不明確 93.4 8.3 3.4 1	m m Hz Hz Hz Hz Hz Hz Hz Hz Hz Hz
other 明確 other 明確 other 明確	05 06 07 08 09	other 試験地盤高 原地里厚 1st peak 2nd peak other 就験地盤高 原地里厚 1st peak 2nd peak 2nd peak 2nd peak other 武験地盤高 原土厚 1st peak 2nd peak other 武験地盤高 原土里厚 1st peak 2nd peak other 武豪 王厚 1st peak other 武豪 北重厚 1st peak other 武豪 北重厚 1st peak other 武豪 北重厚 1st peak other 武豪 北重厚 1st peak other 武豪 北重厚 1st peak other 江厚 1st peak 2nd peak other 江厚 1st peak 2nd peak other 王厚 1st peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.2 90.2 90.2 90.2 0.0 10.10 - - 89.7 89.7 89.7 89.7 0.0 10.30 - 明確 89.3 89.3 89.3 89.3 0.0 8.33	m m Hz Hz Hz Hz Hz M m Hz Hz Hz Hz Hz Hz Hz	other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地型厚 1st peak 2nd peak 2nd peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 成地型厚 1st peak 2nd peak other 試験地盤高 成地型厚 1st peak 2nd peak other 試験地盤高 点型 1st peak other 試験地盤高 点型 1st peak other 試験地盤高 点型 1st peak other 試験地盤高 点型 1st peak 2nd peak other 試験地盤高 点型 1st peak 2nd peak other 試験地盤高 点型 1st peak 2nd peak other 試験地盤高 点型 1st peak other 試験地盤高 点型 1st peak other 試験地盤高 点型 1st peak other 試験地盤高 点型 1st peak other 試験地盤高 点面 点型 1st peak other 試験地盤高 点面 点型 1st peak other 試験地盤高 点面 点型 1st peak other 式原 1st peak 2nd peak other 式原 1st peak 2nd peak other 1st peak	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - やや不明確 91.2 90.2 1.0 - 不明確・右下り 91.1 89.7 1.4 9.17 - やや不明確 9.17 - やや不明確 9.17 - やや不明確 9.17 -	m m Hz Hz m m Hz Hz Hz Hz m m Hz Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地型 2nd peak other 試t peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地量高 原地量 1st peak 2nd peak other 試験地盤高 原地量高 日 1st peak 2nd peak other 試験地盤高 原地量高 京 雪 1st peak 2nd peak other 試験地盤高 原地量高 原地盤高 原地量高 原地量高 原地量高 原地量高 原地量高 原地量高 原地量高 原地量高 原地量高 原地量高 原地量高 原地量高 日 日 日 日 日 日 日 日 日 日 日 日 日	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 7.38 6.19 やや不明確 93.4 8.3 3 4.1 7.32	m m Hz Hz Hz M m m Hz Hz Hz Hz Hz Hz
	05 06 07 08 09	other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other 武験地盤高 原地里層 1st peak 2nd peak other 式験地盤高 原地里層 1st peak 2nd peak other 式験地盤高 原地里層 1st peak 2nd peak other 式験地盤高 原地里層 1st peak 2nd peak other 式験地盤高 原地里層 1st peak 2nd peak 2nd peak	明確 102.3 102.3 0.0 7.78 - 明確 104.5 104.5 0.0 5.29 - 明確 90.2 90.	m m Hz Hz Hz Hz Hz M M Hz Hz M Hz Hz Hz Hz Hz	other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak 2nd peak other 1st peak 2nd peak other 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 原地里厚 1st peak 2nd peak other 試験地盤高 点 点 1st peak 2nd peak other 武 東地盤高 点 五 五 四 四 四 四 四 四 四 四 四 四 四 四 四	明確 102.5 102.3 0.2 - - 不明確・右下り 105.4 104.5 0.9 8.75 - 90.9 8.75 - 90.2 90.2 90.2 1.0 - 7 不明確・右下り 91.1 89.7 1.4 9.17 - やや不明確 9.11 89.7 1.4 9.17 - やや不明確 9.00 8.9.3 0.7 8.17	m m Hz Hz m m Hz Hz Hz M Hz Hz M Hz Hz	other 試験地盤高 原地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地型 2nd peak other 試t peak 2nd peak other 試験地盤高 盛土厚 1st peak 2nd peak other 試験地盤高 原地里 1st peak 2nd peak other 試験地盤高 原本 2nd peak other 試験地盤高 原本 2nd peak other 試験地盤高 原本 2nd peak other 試験地盤高 原本 2nd peak 2nd peak	明確 100.5 102.3 -1.8 6.00 - 明確 111.7 104.5 7.2 5.51 - 明確 98.5 90.2 8.3 6.65 - 明確 94.5 89.7 4.8 7.38 6.19 やや不明確 93.4 89.3 4.1 7.32 -	m m Hz Hz Hz M m M Hz Hz Hz Hz Hz Hz

表-4.2.2 常時微動計測結果一覧表(1/2)

※網掛けは未計測を示す

Point No	Date								
i onit no.	平成29年12月5日 平成30年6月23日 平成30年11月18日								
	試験地盤高	88.3	m	試験地盤高	88.0	m	試験地盤高	94.5 m	n
	原地盤高	88.3	m	原地盤高	88.3	m	原地盤高	88.3 m	n
10	盛土厚	0.0	m	盛土厚	-0.3	m	盛土厚	6.2 m	n
10	1st peak	9.25	Hz	1st peak	-	Hz	1st peak	8.47 H	Ηz
	2nd peak	7.46	Hz	2nd peak	-	Hz	2nd peak	6.27 H	Ηz
	other	明確		other	不明確・右下		other	やや不明確	
	試験地盤高	92.3	m	試験地盤高	91.7	m	試験地盤高	96.2 m	n
	原地盤高	92.3	m	原地盤高	92.3	m	原地盤高	92.3 m	n
11	盛土厚	0.0	m	盛土厚	-0.6	m	盛土厚	3.9 m	n
11	1st peak	4.68	Hz	1st peak	-	Hz	1st peak	7.32 H	Ηz
	2nd peak	6.85	Hz	2nd peak	-	Hz	2nd peak	6.20 H	Ηz
	other	明確		other	不明確・右下り	j	other	やや不明確	
	試験地盤高	90.3	m	試験地盤高	94.7	m	試験地盤高	97.5 m	n
	原地盤高	90.3	m	原地盤高	90.3	m	原地盤高	90.3 m	n
12	盛土厚	0.0	m	盛土厚	4.4	m	盛土厚	7.2 m	n
12	1st peak	6.82	Hz	1st peak	8.44	Hz	1st peak	10.59 H	Ηz
	2nd peak	-	Hz	2nd peak	7.71	Hz	2nd peak	6.20 H	Ηz
	other	やや不明確		other	明確		other	明確	
	試験地盤高		m	試験地盤高	89.3	m	試験地盤高	93.5 m	n
	原地盤高		m	原地盤高	90.3	m	原地盤高	90.3 m	n
120	盛土厚		m	盛土厚	-1.0	m	盛土厚	3.2 m	n
IZD	1st peak		Hz	1st peak	8.09	Hz	1st peak	10.59 H	Ηz
	2nd peak		Hz	2nd peak	-	Hz	2nd peak	6.20 H	Ηz
	other			other	やや不明確		other	明確	
	試験地盤高	103.4	m	試験地盤高	102.7	m	試験地盤高	102.6 m	n
	原地盤高	103.4	m	原地盤高	103.4	m	原地盤高	103.4 m	n
12	盛土厚	0.0	m	盛土厚	-0.7	m	盛土厚	-0.8 m	n
15	1st peak	5.28	Hz	1st peak	-	Hz	1st peak	6.18 H	Ηz
	2nd peak	-	Hz	2nd peak	-	Hz	2nd peak	- H	Ηz
	other	明確		other	不明確・右下り	j	other	やや不明確	
	試験地盤高	101.7	m	試験地盤高	101.8	m	試験地盤高	106.0 m	n
	原地盤高	101.7	m	原地盤高	101.7	m	原地盤高	101.7 m	n
14	盛土厚	0.0	m	盛土厚	0.1	m	盛土厚	4.3 m	n
14	1st peak	4.58	Hz	1st peak	5.64	Hz	1st peak	7.31 H	Ηz
	2nd peak	-	Hz	2nd peak	4.38	Hz	2nd peak	7.51 H	Ηz
	other	やや不明確		other	明確		other	やや不明確	
	試験地盤高	97.8	m	試験地盤高		m	試験地盤高	97.6 m	n
	原地盤高	97.8	m	原地盤高		m	原地盤高	97.8 m	n
15	盛土厚	0.0	m	盛土厚		m	盛土厚	-0.2 m	n
10	1st peak	3.69	Hz	1st peak		Hz	1st peak	7.09 H	Ηz
	2nd peak	-	Hz	2nd peak		Hz	2nd peak	- H	Ηz
	other	明確		other	水たまりで計測す	下可	other	やや不明確	
	試験地盤高		m	試験地盤高		m	試験地盤高	97.6 m	n
	原地盤高		m	原地盤高		m	原地盤高	97.8 m	n
15B	盛土厚		m	盛土厚		m	盛土厚	-0.2 m	n
100	1st peak		Hz	1st peak		Hz	1st peak	15.50 H	Ηz
	2nd peak		Hz	2nd peak		Hz	2nd peak	12.48 H	Ηz
	other			other			other	不明確・右上り	
[試験地盤高	92.2	m	試験地盤高		m	試験地盤高	99.4 m	n
	原地盤高	92.2	m	原地盤高		m	原地盤高	92.2 m	n
16	盛土厚	0.0	m	盛土厚		m	盛土厚	7.2 m	n
10	1st peak	10.20	Hz	1st peak		Hz	1st peak	9.28 H	Ηz
	2nd peak	3.64	Hz	2nd peak		Hz	2nd peak	8.56 H	Ηz
	other	明確		other	水たまりで計測オ	下可	other	明確	

表-4.2.3 常時微動計測結果一覧表 (2/2)

※網掛けは未計測を示す

3) H/V スペクトルピーク値と盛土層厚の関係

図-4.2.21 に H/V スペクトルのピーク周波数と盛土層厚の関係を示す。

盛土層厚が 10m 程度以下のピーク周波数は 4~10Hz 程度を示し、データの幅が広く、明確な盛土厚 とピーク周波数の傾向は確認されなかった。一方、盛土層厚が 25.5m と 31.0m と厚い 2 地点ではピーク 周波数が 3Hz 程度であり、比較的低い周波数を示した。

以上より,盛土厚が比較的薄い場合には,盛土厚とピーク周波数に明確な傾向が認められず,盛土土 厚が比較的厚い場合にはピーク周波数が小さくなる傾向が確認された。

層厚-卓越周波数 関係(不明確データを除く)

図-4.2.21 盛土層厚と H/V スペクトルのピーク周波数の関係

4) まとめ

今回のケーススタディでは,盛土前と盛土中の常時微動測定結果をもとにH/Vスペクトルのピーク周 波数を把握し,造成地の盛土前の初期値の把握と盛土中の盛土層厚との相関性について整理した。

H/V スペクトルのピーク周波数は,盛土前には 5~10Hz と範囲が広く,比較的高い周波数が現れる地 点が多く確認された。盛土中は,盛土厚が比較的薄い場合には,盛土厚とピーク周波数に明確な傾向が 認められず,盛土厚が比較的厚い場合にはピーク周波数が小さくなる傾向が確認された。

但し,盛土厚が20m以上と厚いデータ数が2個と母数が少ないため,今後の盛土の進捗に応じて多くのデータを収集し分析することが期待される。

(2) 和歌山市における大規模盛土造成地調査

1)はじめに

和歌山市では**図ー4.2.22** に示すように北部に大規模な宅地造成地³⁾ が開発されている。本委員会では、先の委員会で計測した結果⁴⁾ と今回実施した結果を踏まえた検討を行い、評価を行う。

*着色部が埋立部 3)

図-4.2.22 常時微動観測地区

図-4.2.23 常時微動観測状況写真

2) 造成年代の検討

本年実施した地区は,大谷,鳴滝,園部,園部・六十谷,六十谷の5地区であり,年代別写真⁵⁾ (表-4.2.5)などより推定した造成年次は表-4.2.4の通りであり,比較的古い年代に造成された地 区であると推定される。

地区	造成時期	地区	造成時期
つつじヶ丘	1990年頃~	鳴滝	1960年代中旬~
木ノ本	1970年代中旬	園部	1970年頃~
ふじと台	2000年頃~	大谷,園部・六十谷, 六十谷	1970年代中旬~

表一4.2.4 🗄	造成年次の推定一	·覧表
-----------	----------	-----

表-4.2.5 年代別写真による造成年次の推定

3) 盛土層厚の推定

調査地点の現地形と旧地形図による盛土層厚読み取り手順を図ー4.2.24 に,重ね合わせ図を図ー 4.2.25 に示す。

a)現況地形の読み取り

国土地理院が整備している航空レーザ測量による5mメッシュ標高データ(数値標高モデル) を使用し,測定地点の最近傍の中心点標高とした。

b)造成前地形の読み取り

旧地形図を収集し,現地形図と重ね合わせ,測定地点ごとに造成前の標高を読み取った。ただし,1:25,000の旧地形図しか存在しない範囲については,1:5,000の国土基本図等が存在する範囲に比べて,その標高の精度は低い。

地区	旧地形図	現況地形
大谷	1/5,000 国土基本図(昭和 44 年)	
鳴滝	1/20,000 旧地形図(明治 43 年)	
園部	1/25,000 旧地形図(昭和 44 年)	航空レーザ測量による
周却, 去上公	1/5,000 国土基本図(昭和44年),	5mメッシュ標高データ
風印・ハ十台	一部 1/25,000 旧地形図(昭和 44 年)	
六十谷	1/25,000 旧地形図(昭和 44 年)	

表-4.2.6 読み取りに用いた地形図

図-4.2.24 新旧地図重ね合わせによる盛土層厚読み取り手段

大谷地区

鳴滝地区

園部地区

園部・六十谷地区

六十谷地区 図-4.2.25 各地区の旧地図との重ね合わせ図

4)H/V スペクトルピーク値と層厚

表-4.2.7 に観測地点毎の盛土厚読み取り値一覧を,図-4.2.26 に H/V スペクトルのピーク周波数と盛土層厚の関係を示す。今回計測した地区では,切土・盛土厚が概ね 20m 以下で,ピーク周波数が明確には確認出来ない。一方,ふじと台地区を中心とした 30m を超える超大規模盛土地区においては,比較的傾向が明確に見られる。これは,狭い谷筋部盛土の場合,鉛直深さよりも近い斜面部に強固な地盤が存在する影響から,必ずしも地盤が軟弱にはならない事や,造成方法,造成年次の影響を受けるため,評価が難しくなる事が要因として考えられる。

* 盛土層厚のマイナスは切土厚を示す。 図ー4.2.26 H/V スペクトルピーク値と盛土層厚の関係

5)まとめ

今回の検討では、常時微動観測結果をもとに H/V スペクトル比のピーク値から固有振動数を把握し、 大規模盛土造成地の盛り土層厚との相関性について整理した。その結果、造成地毎に特性は見られるも のの、盛土層厚が厚いほど固有振動数が小さくなる傾向が確認出来た。また、切土部は厚くなるほど H/V スペクトル比のピーク値が大きくなる傾向が見られた。

ただし、今回実施した「新旧地形図の重ね合わせによる盛土厚算定」については、旧地形図が古く、 狭谷部で斜面に沿うような場所においては、精度が低下している可能性もあるため、さらなるデータ収 集を実施する等、精度を高めていく必要がある。

表-4.2.7 観測地点の盛土・切土厚さ一覧表

估學	司星		ID HATS	成十回()		位業	히묘	- 初十,成十	미바파	成十回()		
卫星	記万	切工・盈工	旧地形	盈工厚(m)	H/ V peak(Hz)	111直	記方	切工・盈工	旧地形	盛工厚(m)	H/V peak(Hz)	
ふじと台東1~3	F101	盛土	池	59	2.5	六十谷	M01	切土	斜面	-7.9	4.9	
	F102	盛土	斜面	37	1.6		M07	切土	斜面	-12.0	7.3	
	F103		斜面	56	2.0		M08	初十	尾根	-33.3	73	
	1100			50	2.0			1000	97 17	冶 依	00.0	7.5
	F104	盛土	斜面	25	5.1		M09	切土	尾根	-37.9	0.3	
	F105	切盛境界	斜面	7	6.6		M13	盛土	谷沿い斜面	5.4	2.6	
	F106	盛土	斜面	10	54		M14	盛土	斜面	15.8	2.5	
	F107		세포	10	0.4		MIT		小山	05.0	2.0	
	F107	留工	計画	25	2.9		CIM	留工	台	25.8	3.8	
	F108	盛土	谷地形	20	4.2		M16	盛土	谷	14.8	3.8	
	F109	盛土	斜面	2	4.1		M17	盛土	斜面	9.1	3.6	
	E110	- 프 프	성품	-10	7.0		M10	成十	성표	5.1	2.6	
	FIIU	例工	示于山	-10	1.2		IVIIO	留工	示1日	5.7	3.0	
	F111	盛土	尾根	0	3.2		M19	切土	斜面	-8.8	5.4	
	F201	盛土	斜面	51	2.4		M20	盛土	斜面	5.7	4.5	
	F202	切十	尾根	-19	4.8		N01	成十	公	0.5	3.1	
	1202	9) L 	尾根	15	4.0	5月7月	1401	<u>一</u> 二 二	-B-	0.0	0.1	
	F203	盛土	斜面	24	2.1		N02	盛土	谷	3.3	3.4	
	F204	盛土	谷地形	34	2.9		N03	盛土	谷	15.3	3.4	
	F205	盛土	谷地形	37	2.6		N04	盛土	谷	14.5	2.6	
	5000		신국	01	6.0		NIOF		 公	10.7	0.5	
	F200	留工	計画	21	0.2		COVI	留工	台	12.7	2.0	
	F207	盛土	谷地形	6	6.3		N06	切土	谷沿い斜面	-1.0	2.5	
	F208	盛土	斜面	11	4.2		N07	切土	尾根	-5.0	0.1	
	F209	成十	斜面	23	2.8		N08	成十	公	16.6	5.2	
	1203		が田	25	2.0		1400		日	10.0	5.2	
	F210	盛土	料面	11	4.1		N13	盛土	谷	3.4	5.2	
	F211	切土	斜面	-30	9.6		N15	盛土	谷	3.3	4.7	
	F212	盛土	谷地形	35	2.1	大谷	001	切土	尾根	-34.0	0.3	
1	F010		P+9		4.1		000	 	성국	_10.0	0.0	
	FZ13	切螢現界	 尾恨	4	4.1		002	句工	料田	-10.2	0.3	
和歌山大学内	F301	盛土	谷地形	12	5.1		003	切土	斜面	-13.6	0.3	
	F302	盛土	谷地形	32	4.5		004	切土	斜面	-1.2	1.2	
1	F303	 初十	尼坦	_6	15		005		斜面	-14.5	0.2	
	F303	刻工	尾版	U	4.5		003	列工	赤十回	14.5	0.2	
	F304	盛土	谷地形	32	4.0		006	切土	斜面	-0.9	4.3	
	F305	盛土	谷地形	40	3.3		007	盛土	谷	10.8	-	
	F306	切十	尾根	-3	4.5		008	盛十	斜面	9.9	0.1	
	5007	<u>中</u> 上		00	1.0		000	100 ±	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.5	0.1	
	F307	盛工	谷地形	36	4.3		009	切工	料田	-1.5	2.1	
ふじと台西	F401	盛土	斜面	8	6.9		010	切土	尾根	-3.1	6.2	
	F402	切土	斜面	-26	7.1		011	盛土	崖	12.8	4.6	
	E402	扣成倍更	尼坦	-6	4.0		012	成十	公公口約面	16.9	0.2	
	F403	切盆現介	尾板	-0	4.0		012	留上	台合い料面	10.6	0.2	
	F404	盛土	谷地形	16	7.2		013	盛土	谷沿い斜面	3.6	2.4	
	F405	切土	斜面	-33	11.3		014	切土	尾根	-26.7	1.5	
	F406	切十	尾根	-58	14.8		015	切十	尾根	-21.6	0.1	
ことしたまないた	FF01	····	公共市区	00	4.0		010		성품	0.0	0.7	
かして 日来 3~5	F301	麗工	各地形	31	4.Z		010	留工	示+田	2.0	3.7	
	F502	切盛境界	尾根	5	4.2		017	切土	谷沿い斜面	-3.9	0.2	
	F503	盛土	斜面	50	2.5		018	切土	斜面	-12.6	1.6	
	E504	成十	公地形	50	2.4		010		剑而	-0.5	7.2	
	F504		台地形	55	2.4		019		까 프	9.J	1.2	
	F505	盛土	谷地形	54	3.3		020	盛土	料面	2.9	4.6	
	F506	盛土	斜面	29	3.5		021	盛土	斜面	16.3	4.4	
	F507	切盛境界	尾根	-5	5.5		022	切土	斜面	-9.5	0.1	
	F601	成十	성품	20	2.5		000		同日	-20.2	1.5	
	FUUT	麗工	示于国	29	2.0		023	剑工	尾侬	-30.Z	1.0	
	F602	盛土	斜面	34	1.7		024	切土	尾根	-8.7	5.3	
	F603	盛土	谷底平地	71	1.9		O25	盛土	谷	18.1	3.4	
	F604	盛十	斜面	36	20		026	盛十	斜面	15.4	37	
	5605	加成培用	同日	_1	1.0	周朝,五上公	SM01		可在基	10	0.4	
	F005	列盆境齐	尾恨	-1	4.8	風部・六十谷	SMUT	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		1.9	9.4	
	F606	切土	尾根	-8	4.4		SM02	盛土	扇状地	3.6	6.0	
	F607	盛土	谷地形	32	4.3		SM03	盛土	谷	4.1	4.9	
木/本	K101	感十	3th	7	73		SM04	成十	公	2.6	5.6	
	14100	<u>ــــــــــــــــــــــــــــــــــــ</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,	,		01104	ᄪᆂ	고	2.0	0.0	
	K102	盛土	氾脇料面	2	9.0		SM05	列土	料田	-2.9	b.4	
	K103	盛土	池脇斜面	6	2.2		SM06	切土	尾根	-13.0	5.7	
	K104	盛土	谷地形	5	1.2		SM07	切土	斜面	-0.5	4.8	
	K105	感+	谷地形	7	52		SM08	感十	公	7.8	8.0	
	14100	<u>ــــــــــــــــــــــــــــــــــــ</u>	ロービルン 公山Lアイ	,	0.2		01100	 LT	- 40 - 12	1.0	0.0	
	K 106	盛土	谷地形	2	9.2		SM09	列土	 尾根	-11.3	0.3	
	K107	切盛境界	谷地形	-1	1.1		SM10	切土	斜面	-7.7	8.9	
	K108	切盛境界	谷地形	-1	6.6		SM11	盛土	斜面	0.2	7.1	
	K109	成十	公害者	3	6.2		SM12	成十	斜而	95	8.8	
	1(100	ᄪᅩ		3	0.2		ONIZ		~~ 비	0.0	0.0	
	K110	切主	尾根	-34	9.7		SM13	盛土	料面	0.7	5.5	
つつじヶ丘	T101	盛土	谷底平地	7	5.2	園部	S01	盛土	斜面	17.3	2.7	
	T102	切土	尾根	-26	9.0		S02	盛土	谷	15.4	4.1	
	T102		尼坦	_10	0.1		502	<u>—</u> — 成十	「「「」」の「「」」	70	47	
	1103	말고	/毛侬	-18	9.1		303	· 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	台泊い料画	1.3	4./	
1	T104	盛土	谷地形	13	5.1		S04	盛土	谷	6.3	9.6	
1	T105	盛土	谷地形	9	4.2		S05	盛土	谷	14.3	5.4	
1	T106	盛+	谷底亚州	31	27		S06	感+	斜而	90	9.2	
1	T107			40	2.7		007	ᄪᅭᅭ	는 10 - 11	0.0	U.L.	
	1107	列土	 尾根	-13	2.0		507	列土	 	-6.2	5.4	
	T108	盛土	池	15	4.4		S08	切土	斜面	-11.0	2.9	
	T109	盛土	谷底平地	25	3,9		S09	切土	斜面	-4.6	3.7	
	T110		성품	_01	0.1		010		성문	-5.0	0.6	
	1110	파	ホ+田	-21	0.1		310	UT IN	赤+田	-0.0	9.0	
	T111	盛土	谷底平地	26	3.1		S11	切土	谷沿い斜面	-4.1	9.9	
	T112	盛土	沢筋	17	3.7		S12	切土	尾根	-22.3	2.6	
·												

*盛土厚さのマイナス表記は、切土であり数値は切土厚を示す。

4.2.3 物理探査による土地変遷把握

前節で示した様に,盛土上では振動特性が基礎地盤 と異なる。造成過程が明らかであれば,基礎の土質性 状および盛土材料の材料特性を与えることで,盛土上 で観察される地震波の予測も可能であるが,既存の造 成地では,盛土範囲や盛土厚さとともに,土質特性を 知ることも困難である。物理探査はボーリングサンプ ルの力学試験やサウンディングと異なり,地盤性状を 面的に捉えることができるため,広範囲の地盤調査に 適している。しかしながら,間接的な物理量から土質 定数を推定する必要があるため,土質のみならず地形 や地下水に含まれる溶解物質などの影響も受けるた

図-4.2.27 表面波探査⁶⁾

め、地盤性状の定量的な評価のためには他の試験と併用しキャリブレーションを行う必要がある。ここ では、物理探査の中でも表面波探査と電気探査に注目し、物理探査の信頼性照査、実務への適用性につ いて検討を行う。

(1)表面波探査・電気探査の概要

ハンマーなど地表に打撃を与えると、レイリー波と呼ばれる表面波が地表付近に沿って伝播する。このときの速度はS波速度の0.9~0.95倍であり、地表面に垂直な方向に大きく振動する波となる。振動 エネルギーは地表面で大きく、深くなる程に減衰するため、およそ波長に相当する深さまでの地盤のS 波速度値を反映する。また、表面波の速度は波長に依存して変化する。表面波探査では、地表面上に複数の加速度計を設置し、表面を伝播する波を捉えて解析することで、地盤内のS波伝播速度分布を知る ことができる(図-4.2.27)。得られたS波速度は、地盤の工学的評価に適応性が高く、地盤剛性と良い

	配置および見掛け比抵抗表示点	電極配置係数 (G)	見掛け 探査深さ	特 徵
ポール・ポール法 (二極法)	$\begin{array}{ccc} & & & & \bullet \\ C_{*} & C_{1} & P_{1} & P_{n} \\ \bullet & & & \bullet \\ & & & & \bullet \\ & & & & & \bullet \\ & & & &$	2πа	a	受信電位差が大きく、作業性がよい。感度が小さく、概査に 適す。同一探査測線長では、より深部まで探査できる。比抵 抗法二次元探査で用いることが多い。測定値から、他の電極 配置データを計算できる。送・受信遠電極の設置が必要。
ポール・ ダイポール法 (三極法)	$\begin{array}{ccc} C_{*} & \overbrace{C_{1}}^{na \longrightarrow a \rightarrow} a \rightarrow \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$	$2n(n+1)\pi a$	$\frac{2n+1}{4}a$	ボール・ボール法より感度がよい。ダイボール・ダイボール 法より作業性がよく、ノイズの影響を受けにくい。水平探査 や比抵抗法二次元探査に用いる。 探査結果が電極配置の非対称の影響を受ける。 送信遠電極の設置が必要。
ダイポール・ ダイポール法 (四極法)	$\begin{array}{ccc} & & & & & & \\ \hline C_1 & C_2 & & P_1 & P_2 \\ \hline & & & & & \\ \hline \end{array}$	$n(n+1)(n+2)\pi a$	$\frac{n+1}{2}a$	感度が大きく、分解能が高い。受信電位は小さい。断層のよ うな垂直構造の調査に適す。水平探査や比抵抗法二次元探査 に用いる。n=1に固定して、aを広げる方法をエルトラン法 とよぶことがある。
ウェンナー法	$\begin{array}{c c} & -a \rightarrow \\ \hline C_1 & P_1 & P_2 & C_2 \\ \hline & & & \\ \hline & & & \\ a \end{array}$	2πа	a	受信電位差が大きく,作業性がよい。 水平多層構造の調査に適す。 垂直探査,水平探査および比抵抗二次元探査にも適用でき る。
/ュランベルジャ法	$\begin{array}{c} \overbrace{C_1}{} ma \xrightarrow{} a \xrightarrow{} ma \xrightarrow{} ma \xrightarrow{} \\ \hline P_1 P_2 C_2 \\ \hline \hline \end{array}$	$m(m+1)\pi a$	$\frac{2m+1}{2}a$	電流電極 C ₁ C ₂ 間隔が電位電極 P ₁ P ₂ の5倍以上になるように 電極を移動する。 垂直探査,特に100m以深の深部探査に適す。

表-4.2.8 電気探査における電極配置とその特徴⁶⁾

C1, C2: 電流電極, P1, P2: 電位電極, Cm, Pm: 遠電極, a: 電極間隔 (m), m, n: 電極隔離係数

相関があるとされている。

電気探査は、地盤に直流電流を通じた際に地表に生じる電位応答より、地下の比抵抗分布を求める手法である。1 対の送信電極(Cm, Cn)と1 対の受信電極(Pm, Pn)を用い、送信電極で発生した電位差と受信電極における電位差を元に受信電極間の地盤の見かけの比抵抗が計測される。ここで、見かけの比抵抗と

しているのは,得られるものが電極 間の平均の比抵抗を示すからであり, 電極を高密度に設置することで,よ り解像度の高い比抵抗分布を得るこ とができる。4本の電極の配置方法は, 多くの組み合わせがあり,主な電極 配置の特徴を表-4.2.8にまとめる。 得られる地盤の電気比抵抗は,地層 の間隙率,水分飽和率,間隙水比抵 抗,粘土鉱物含有量,温度など,多 くの要因により変化するが,同じ土 質であれば間隙率×水分飽和率=体 積含水率分布を反映したものとなる。

(2)弁天町におけるサウンディン

グ調査との比較

先に示した様に,物理探査では得 られる物理量の定量的評価が問題 となる。そこで,詳細なボーリング 調査に加えて,種々のサウンディン グ調査を行っている弁天町の現場 において表面波探査, 電気探査を実 施し, データの比較から物理探査の 信頼性検証を行う。図-4.2.27 に ボーリング,サウンディング調査位 置と探査測線の位置関係を示す。中 央赤点線を探査中心としている。表 面波探査では加速度計を1m間隔で 24 個, 電気探査では 32 本の電極を 1m間隔で設置した。電気探査では, 電極配置による探査特性を確認す るために、ポール・ポール法とダイ ポール・ダイポール法を採用した。

図-4.2.29, 図-4.2.30 に,表

図-4.2.29 S 波速度分布(測線 No.1)

面波探査によって得られた,S波速度 分布を示す。測線距離程の6.5~16.5(m) 位置でサウンディング調査が行われて いる。探査測線上に建屋があったこと で、測線 No.1 と No.2 で測線長が異な っている。測線 No.1 では、建設資材を 置いていた箇所に近かったため、地表 面に打撃を加えた際に建設資材と共振 していたこと, また交通量の多い道路 に面していたため, 受信波に相当なノ イズが含まれており、それらを取り除 いた結果,得られた S 波速度分布の解 像度が落ちてしまった。測線 No.2 は, 得られた結果にフィルターをかけるこ となく整理したので、こちらをもとに サウンディング調査との比較を行う。 図中の赤い部分程, S 波速度が大きい 領域を示す。図からサウンディング調 査範囲内では、深度 4m および 9m のあ たりにS波速度の高い領域が確認でき る。ボーリング調査では、深度 4~5m のあたりに砂礫層が確認されており, 表面波探査でもこの層を捉えているも のと考える。PS 検層はボーリング孔を 用いて弾性波速度の深さ方向の分布を 測定する物理検層である。S 波速度を 計測するという意味で, 表面波探査と 原理は同じである。図-4.2.31 に表面 波探査と PS 検層によって得られた S 波速度分布を比較する。表面波探査で 得られた S 波速度の方がやや高い傾向

図-4.2-33 標準貫入試験との比較

を示すものの, 深度 7~8m ぐらいまではよい一致を見せている。表面波探査では地表面で与えた振動が, 深部に行くほど減衰するので,可能探査深度は高々15m 程度であるとされている。そのため, 深部行く ほど PS 検層との乖離がみられる。他のサウンディング調査との比較を行うために,得られた S 波速度 分布を N 値に変換する必要がある。S 波速度と N 値の相関については,様々な提案式が与えられている。 ここでは,次式で示す Imai and Tonouchi(1982)の式⁷を用いる。

$$N = \left(\frac{V_s}{97}\right)^{\frac{1}{0.314}}$$
(4.2.1)

図-4.2.34 中型動的コーン貫入試験との比較

図-4.2.35 スウェーデン式サウンディング

ここで、N はN 値、V_s はせん断波速度(m/s)である。図-4.2.32 に、式(1)を用いてS 波速度をN 値に 変換して求めた測線 No.2 のN 値分布を示す。図-4.2.33~図-4.2.37 で、それぞれ標準貫入試験、中 型動的コーン貫入試験、スウェーデン式サウンディング試験、ISO および JIS 仕様スウェーデン式サウ ンディング試験、手動式スウェーデン試験から得られた換算 N 値と表面波探査から得られた N 値を比 較する。多少バラツキは見られるものの、各種サウンディング試験とよい一致を見せている。ただし、 PS 検層との比較でも見られたように深くなるほどに精度は落ちると言える。

電気探査を行うにあたって、ポール・ポール法では同一測線長ではより深い探査深度を得ることがで きることから、よく用いられるが、遠電極を設置する必要がある。遠電極は測線長の3倍を目安とする ため、探査実施場所の制約を受ける。弁天町の現場では測線から25m程離れた位置に遠電極を設けるこ とができた。図ー4.2.38、図ー4.2.39にそれぞれ測線No.2のポール・ポール法、ダイポール・ダイポ ール法で行った電気探査の結果を示す。赤い部分程、電気比抵抗が大きいことを示す。ポール・ポール 法と、ダイポール・ダイポールによる探査結果に違いがみられないことから、現場の制約条件によって 2つの電極配置法を使い分けることができることが示された。本現場は、粘土層と砂層の互層を成して いるが、土質の違いは明確には確認できない。ボーリング調査では2.0m深度あたりに地下水位がある が、電気比抵抗が緑色から青色に変化するあたりと一致している。電気比抵抗は含水率との相関が高い とされており,探査結果の妥当性が 伺える。しかし,地下水位以下の領 域の分解能は低く,ここではある深 度に注水のような圧力分布を有する 深度があることが報告されているが, それに関しては表現できていない。 つまり,地下水位付近の毛管帯(飽 和度が高く負の水圧を有する領域) が探査結果として現れると考えられ る。

表面波探査,電気探査の結果はサ ウンディング調査の結果とはやや異 なるものの,全体的にはよい相関を 見せていることから,浅層の地盤性 状を面的に把握するのに有効である と言える。

(3)猪名川町大規模盛土現場における適用性検証

弁天町現場において、物理探査の信頼性が確認できたので、実際の造成地に適用する。ここでは、40m を超える大規模盛土が実施されている猪名川町の大規模造成地を探査対象とする。図ー4.2.40に探査測 線を示す。

図-4.2.40 猪名川町造成地探査測線

測線 a,b,c は沈砂池周辺の盛土区間であり、測線 e,d は切土区間である。表面波探査に関しては測線 a~e で実施,電気探査に関しては測線 a~c と d,e を含む区間で実施した。

表面波探査は、2018 年 9 月 2 日,電 気探査は 2018 年 11 月 12 日と探査実施 日が異なる。沈砂池周辺の測線 a~c で は、表面波探査実施日には 5m 程盛土が なされた状態であり、その後、電気探査 実施日までにさらに 5m,全体では 10m 程の盛土高さとなっている。

図-4.2.41~図-4.2.44 に, それぞ れ測線 a~c および d,e における,表面波 探査から得られたせん断波速度分布と, 電気探査より得られた電気比抵抗分布 を示す。まず、沈砂池周辺の盛土領域に ついて見ていく。測線 a~c の表面波探 査の結果からは、下部ほど赤い領域が多 く, 深部に剛性の高い地盤があることが 伺える。せん断波速度 250m/s は, N 値 に換算すると 20 程であり、盛土材料と 基礎地盤の境界を表していると考える と、いずれの測線においても 5m 深度あ たりを指しており,実際の施工過程と一 致している。また,現場は図-4.2.38 中で左から右に谷部が傾斜しており,測 線 a の方が c よりもやや谷が深く, 表面 波探査の結果ともよい整合性を見せて いる。つまり,表面波探査で盛土の厚さ を精度よく評価できていると言える。電 気比抵抗分布には測線毎の違いが現れ ている。電気比抵抗の大きい赤色部分は 水分量が少ないと考えられる。4.2.1 で 示した様に、盛土では、施工直後から、

盛土材料に含まれる水分が位置水頭差によって再分布するため、下部ほど含水率が高くなり、水分量が 多くなると最下部で地下水位を形成する。しかし、電気比抵抗分布からはそのような傾向は見て取れな い。特に、測線 b,c では、下部に電気比抵抗の大きな領域が残っている。これは、盛土の施工日と探査 実施日が近かったことが考えられる。探査深度から、電気探査領域はすべて盛土材であり、ここで現れ ている電気探査の結果は、盛土内に含まれる水分の再分布過程で得られたものであると言える。つまり、 測線間の電気比抵抗分布傾向の違いは、盛り立て時期が異なることによると考えられる。

切土領域の測線 d,e については、測線 a~c とは明らかにせん断波速度の値が異なるので、色の範囲が

異なっている。探査領域内で最もせん断波速度が小さな領域で 250m/s となっており,測線 a~c の基礎 地盤のせん断波速度とほぼ一致している。また,電気比抵抗分布からは,盛土区間に比べると,地表面 近傍に電気比抵抗の大きな,含水量の小さな領域があり,深部に向かって電気比抵抗が大きく,含水量 が大きくなっていくのが確認できる。

以上の結果より、物理探査結果が、造成地の施工段階の盛土状況を反映したものとなっており、地盤 性状を知るのに有効的であることが確認でき、既存の造成過程が不明な盛土の調査においても適用可能 であると考える。

4.3 自然斜面における土砂災害検討

4.3.1 地震に起因する斜面崩壊

(1) 兵庫県南部地震

1995年の兵庫県南部地震(M_j7.3)時には、六甲山系および淡路島においては、多くの山腹斜面崩壊が発生し、神戸側では特に、六甲山系の南東部の断層に沿う部分や宝塚市の西方で斜面崩壊発生数が多く、また淡路島側では野島断層付近の急斜面を中心として斜面崩壊が多数発生していたと報告されている⁸。沖村⁹は、六甲山系を対象として、空中写真判読結果を用いて縮尺 1/50,000の地形図上で崩壊分布図を作成しており、兵庫県南部地震による斜面崩壊数としては、小規模なものを含めて 747 カ所であったとしている。六甲山系における過去の豪雨(1967年7月豪雨)災害では、3,775ヶ所の斜面崩壊が発生したと報告¹⁰されており、崩壊数はこれに比して5分1程度であったことがわかる。

鳥居¹¹⁾は、地震によって崩れやすかった斜面の地形的特徴を検討するためには、バックグラウンドである六甲山系全体から比較の考察を行う必要があると考え、数値標高モデルを用いて、そこから算出することのできる局所地形量からみた地形立地条件について検討している。具体的には、バックグラウンドである六甲山系全体から比較により、崩れやすい斜面の地形条件を表すことを目的として、崩壊出現率*A*_Nを式(4.3.1)のように定義している。

$$A_N = \frac{F_N}{B_N} \times 100 \tag{4.3.1}$$

ここで、A_N =局所地形量のランク毎の崩壊出現率(%)

B_N =局所地形量のランク毎の六甲山系全体の単位格子数(個)

F_N =局所地形量ランク毎の崩壊格子数(個)

なお、数値標高モデルとして数値地図 50m メッシュ (標高)¹²⁾を用いている。数値標高モデルを用い た斜面崩壊地の地形立地解析を行う場合、対象とする崩壊地のサイズを考慮し、それに適した格子間隔 の数値標高モデルを採用することが重要である。兵庫県南部地震により発生した崩壊地の規模は、おお よそ幅 10~20m、長さ 30~40m であり、これに比して数値地図 50m メッシュ (標高) はサイズがやや 大きいが、六甲山系全体がカバーされているので、このデータを用いて検討が行われている。地形立地 解析の結果、兵庫県南部地震により発生した斜面崩壊地の地形的特徴として、i) 六甲山系における中腹 から斜面上方に位置する場所が崩壊しやすい場所であった、ii) 急傾斜の場所ほど崩壊が発生しやすか った、iii) 地表面の凹凸が激しい場所ほど崩壊が発生しやすかった,iv) 斜面崩壊と崩壊方位角との関 係については顕著な方向性は見られなかったとしている。また、これらの斜面崩壊地の地形的特徴は、 過去の地震時に発生した崩壊地の特徴と同様の傾向を示しており、よって、他地域においても、このよ うな地形的特徴を表現する指標を用いて対象地域の地形条件を調べることが、地震時に崩壊発生の可能 性の高い斜面の抽出する際に有用であるとしている。

さらに,六甲山系では地震後の降雨に伴って崩壊の拡大や新規崩壊が数多く発生している(図-4.3.1 参照)。建設省六甲砂防工事事務所¹³⁾(現,国土交通省六甲砂防事務所)では,空中写真と現地調査よ り縮尺 1/10,000の地形図をベースマップとした崩壊分布図の作成を行っている。これによると六甲山系 では,兵庫県南部地震後から 1995 年 10 月末まで約 10 ヶ月の間に,地震による崩壊数を上回る 935 ヵ 所の山腹斜面崩壊が発生している。この地震後の斜面崩壊発生の誘因となった降雨としては,5月 11~ 15日の降雨(総雨量 233mm, 最大日雨量 119mm/day, 最大時間雨量 20mm/hr) や6月 30~7月7日の 降雨(総雨量 263mm, 最大日雨量 73mm/day, 最大時間雨量 18mm/hr) が考えられるが, 兵庫県南部地 震前の 10 年間の降雨量と比較しても,時間雨量,日雨量,年間雨量のいずれにおいても,ほぼ平年並 の降雨量であったことが報告11されている。また、冨田ら14は、兵庫県南部地震後の崩壊地の拡大が顕 著であった鶴甲地区の崩壊地を対象に、地震前後の降雨量を比較検討した結果、地震前の降雨量に比し て少ない降雨量で崩壊が発生していることを明らかにしている。1967年7月の豪雨では、3日間で総雨 量 371.2mm, 最大日雨量 319.4mm の降雨により, 3,775 ヶ所で斜面崩壊が発生しており¹⁰, この降雨量 と比較しても、兵庫県南部地震後の降雨量はかなり少ないといえ、900 カ所を超えるような崩壊を引き 起こす降雨量ではなかったことから、鳥居¹¹は、地震を起因とする斜面崩壊としては、地震直後に発生 する斜面崩壊のみならず、その後の降雨によって発生する斜面崩壊に対しても考える必要があるとして、 兵庫県南部地震後の降雨による斜面崩壊がどのような地形条件の場所で発生していたのかを、兵庫県南 部地震による斜面崩壊地に対する手法と同様の手法を用いて明らかにしている。その結果, i) 六甲山系 における中腹から斜面上方に位置する場所において崩壊が発生しやすかった,ii)兵庫県南部地震と比 較すると緩傾斜の場所においても崩壊が発生しているが、全体の傾向としては、従来の降雨時の崩壊地 に比してより急傾斜の場所で崩壊が発生しやすかった,iii) 兵庫県南部地震後の降雨により発生した崩 壊地は最終的な誘因は降雨であるにもかかわらず、むしろ地震を誘因とする崩壊地の特徴に近い結果で あったといえ、このことは、何らかの地震動の影響を受けたが崩壊には至らなかった斜面がその後の降 雨により崩壊したため、これらの地形形状を示す場所での崩壊率が高くなった、iv)兵庫県南部地震直 後には地震動の影響を受けたにもかかわらず、崩壊には至らなかった斜面が数多く六甲山系には存在し ており、それらの斜面において地震前では崩壊発生には至らないような少ない降雨量であったにもかか わらず、崩壊が発生したことが考えられるとしている。

地震や降水量の多い我が国の特徴を考えれば、大規模な地震発生後には、上述したような地震後の降 雨を起因とした斜面崩壊が発生し、それにより災害が発生する可能性が懸念される。よって、地震を起 因とする斜面崩壊としては、地震時に発生する斜面崩壊のみならず、その後に発生する斜面崩壊に対し ても考える必要があるといえる。

図-4.3.1 兵庫県南部地震ならびに地震後に発生した崩壊分布図¹¹⁾

(2) 新潟県中越地震

2004 年 10 月に発生した,新潟県北魚沼郡川口町(現長岡市)の直下を震源とした逆断層型の内陸地 殻内地震では,マグニチュード 6.8 が観測され数多くの地すべりが発生した。また,地すべり等により 生じた道路の寸断や河道閉塞は,中山間地での生活に深刻な影響をもたらした。中越地震で発生した地 すべりは,地震発生前に存在した地すべり地形内で発生したものや,地震前の降雨が要因と考えらえる 箇所が数多くあった。

脆弱な起伏に富んだ地形を有し,降水量の多い我が国の特徴を考えれば,もともと崩壊の恐れがあった箇所や,降雨と地震の複合的な要因による斜面崩壊が発生し,それにより災害が発生する可能性が懸 念される。よって,地震を起因とする斜面崩壊としては,地形条件や,気象条件にも配慮した考察が必 要と考えられる。

図-4.3.2 中越地震の震源断層矩形範囲(東大地震研)に一部追記

対象箇所は、新潟県中越地方に位置する東山丘陵の南部に位置する。

中越地方の地形は、魚野川を境に、東側は標高 1,500~2,000mの急峻な越後山脈が南北に連なり、西 側は魚沼丘陵・東山丘陵や東頸城丘陵などの低平な丘陵やその間に分布する盆地からなる。これらの丘 陵の稜線の方向は顕著な北北東~南南西を示し、本地域の地質構造や地殻変動の結果を反映したものと なっている。東山丘陵の標高は 300~450m程度であり、その中央部を芋川が南の方向に流れ、魚野川に 合流する。

新潟県中越地震の本震は東山丘陵の南部で発生し、斜面災害は主に東山丘陵の芋川流域に集中した。 図-4.3.2 は、調査地の地質と地震発生前の地すべり地形及び地震により発生した地すべりの分布、 及び主要な崩壊箇所を示したものである¹⁵⁾。

東山丘陵には新第三紀中新世から第四紀更新世にわたる褶曲した地層が広く分布し、地質は下位から 火砕岩主体の猿倉岳層、塊状泥岩主体の荒谷層、砂岩・泥岩互層主体の川口層、泥岩主体の牛ヶ首層、 砂質シルト岩主体の白岩層、砂岩主体の和南津層及びシルト・砂・礫の魚沼層からなる¹⁶。東山丘陵の 骨格をなす東山背斜の西翼における西向き流れ盤斜面の傾斜は 20~30°であるのに対し、東翼の受け盤 斜面の傾斜は 60~80°である。この付近には地すべり地形が数多く分布している¹⁷。

この付近では、既存地すべり地形は 1,050 箇所が判定され、その中でも地震により地すべりが発生した箇所は 96 箇所であった。また、地震により発生した 96 箇所の地すべりの内、64 箇所(既存地すべり地形内で複数の地すべりが発生した場合もある)である 67%が既存地すべり地形内で発生している¹⁸⁾。

また,この地震では,その発生直前に台風 23 号の上陸による豪雨が発生している。この際の降雨量 は,図-4.3.3 に示す通り,発生3日前の20日には日降雨量79mm,19日からの総降雨量132mm を記 録している。

この降雨により地盤がゆるみ,その後地震が発生したことで,斜面崩壊などの地盤災害が多発したと 考えられる。

降雨の分布状況と,地すべりとの関係については評価されており¹⁸,考察の結果,実効雨量が70mm を超えた範囲において,表層崩壊,特に地すべりにおいて顕著な傾向がみられた。また,この傾向は30° 以下の緩斜面ほど顕著に現れることが確認されている。

このことより,降雨後には比較的緩やかな斜面においても,地震による崩壊の恐れが高く,加えて, 特に地すべり地形においては,降雨のみでは崩壊に至らない場合でも,地震等の追加要因によって崩壊 の恐れがあることを踏まえておくことが必要であると考える。

(3) 熊本地震

平成28年(2016年)熊本地震では、まずM6.5の地震が発生し、最大震度7が益城町で観測され、その約28時間後に同地域でM7.3の地震が発生し、最大震度7が益城町及び西原村で観測された。国内において観測史上初めて同地域で2度の震度7を連続して観測された特徴的な地震であり、大きな被害をもたらした地震である。

土砂災害の概要としては、190 件の土砂災害が発生している。内訳としては、土石流 57 件、地すべり 10 件、がけ崩れ 123 件となっている。また、土砂災害による人的被害は 15 名であるが、このうち6 月 19 日から6 月 25 日に発生した豪雨により生じた土砂災害による関連死が 5 件とされている¹⁹。

地震後,4月,6月に降雨を誘因とする土砂災害が熊本県で65件発生し,その内訳は,土石流等が17件,がけ崩れが48件となっている²⁰⁾。地震後の降雨による影響により,新たな斜面崩壊のほか,崩壊の拡大,崩壊土砂・流木の流出等が発生し被害が生じている。

これらの土砂災害は,主に4月21日,6月19~29日の降雨(図-4.3.4参照)により生じたものである。この降雨は,当該地域で毎年発生する程度の降雨(アメダス阿蘇乙姫:7月の月間降水量の平均値570mm)であり,近年,阿蘇地域で大規模な土砂災害を発生させた平成24年7月九州北部豪雨の際の降雨(アメダス阿蘇乙姫:最大24時間降水量507.5mm)と比較しても小規模な降雨であったが,地 震後の影響に伴い土砂移動現象の発生が生じたものとされている²¹⁾。

図-4.3.4 地震前後の降雨の状況²²⁾

阿蘇山周辺では,崩壊の形態,崩壊規模において多様な斜面崩壊が確認されている。笠間ら²³は,斜 面災害の形態別に,①落石・トップリング・岩盤崩壊,②深層崩壊,③表層崩壊,④連続的な表層崩壊, ⑤地すべり性崩壊,⑥土石流にタイプ分類し,崩壊の発生した地盤別に,火山岩類(岩盤)の斜面崩壊 (タイプ①,②)と,火山灰質地盤における崩壊(タイプ③,④,⑤),崩壊土砂の流下(タイプ⑥) に区分している。また,立野地区で発生した深層崩壊について,過去の降雨を誘因とする大規模土砂災 害との比較として,降雨を誘因とした斜面崩壊よりも崩壊の幅が 200m と大きい点を指摘するとともに, 降雨では谷部の斜面において崩壊が発生するのに対し、特に烏帽子岳周辺の尾根部において同時多発的 に表層崩壊が発生した点を指摘している。

図-4.3.5 大規模な斜面崩壊の状況(左;立野地内,中央:高野台地区,右:夜峰山付近)

阿蘇山周辺では,過去には豪雨による斜面崩壊も繰り返し発生しているが,図-4.3.6に示すように, 地震動による斜面崩壊とは発生場所が異なることが指摘されている²⁴⁾。また,前述したように地震後に は過去の豪雨に比較して強度の低い降雨による斜面崩壊が発生している。

そのため、当研究委員会において、降雨と地震による複合的影響による斜面崩壊のモデルケースとして詳細な検討を実施しており、詳細は4.3.3 にまとめて記述した。

データ出典:防災科学研究所(2016):熊本地震による土砂移動分布図(2016.6.27 更新) <<u>http://www.bosai.go.jp/mizu/dosha.html</u>>

図-4.3.6 土砂移動分布図(平成24年豪雨との比較)

(4) 北海道担振東部地震

2018 年 9 月に北海道胆振東部で発生した地震はマ グニチュード 6.7 を観測し,主に厚真町で多数の表層 崩壊,札幌市等での液状化,厚真ダムへの土砂流入, 支笏湖付近での斜面崩壊などが発生した。

特に札幌市内では、大規模な液状化が発生するとと もに、苫東厚真火力発電所の停止に伴う大規模な停電 を発生させた地震である(図-4.3.7)。

1)厚真町の土砂崩壊

厚真町では,多数の表層崩壊が発生し,それに伴う 河道閉塞が発生した。

厚真川流域の山地・丘陵斜面は,支笏・恵庭・樽前を起源とする降下火砕堆積物が堆積岩の上に分布 している。崩壊は,主に谷部分で発生しているが,表層崩壊が多数みられるもの,比較的深い位置での 崩壊も生じている。

同じ火山由来の土質での地震による被災としては、熊本地震が挙げられるが、鉱物組成の違いなどに

図ー4.3.9 幌内地区での土砂流出 より単純比較は難しいと考えられる。

幌内地区では,吉野地区の表層崩壊(図-4.3.10) と異なる斜面崩壊パターン(長距離土砂流動)を示 しており(図-4.3.9),幌内地区上流部の長距離土砂 流動の発生地点は,谷地形のような箇所も多い(図-4.3.8)。また,周辺には,日高幌内川があり,河道 閉塞している箇所もあった。一部では,土石流のよ うに周りの斜面を巻き込みながら流下しているよう

図-4.3.10 吉野地区での土砂流出

に見える。なお、厚真町付近では、前日に日降雨量 12mm 程度の降雨は見られるが(図-4.3.11 参照)、 地震前の台風21号の影響があったかどうかは不明である。

樽前, 恵庭, 支笏を噴出源とする降下軽石火砕堆積物は, 粒子破砕性を示す土質である。これらの土 質材料に対して, 地震による斜面崩壊に及ぼす粒子破砕の影響を調査・解明する必要がある。加えて, 類似する堆積状況下ある斜面において、崩壊した箇所としていない箇所との相違点、表層崩壊と比較的 深部での崩壊に対する崩壊メカニズムの相違点を検証する必要がある。

2)国道 453 号付近での斜面崩壊

支笏湖畔の国道 453 号は、台風 21 号により、地 震発生前の9月3日から5日にかけて,連続雨量 263mm,時間最大雨量 51mm/h を記録しており,地 震発生前後で斜面崩壊が確認された。

(a) 地震による斜面崩壊箇所

弱く固結した恵庭降下軽石層からなる自然斜面 から構成。崩壊箇所は、比高約40~50m、約50度 の急斜面で、明瞭な湧水は見られないもの、崩壊後 の斜面は基盤の軽石層が露出し、大雨による強度低 下にはかろうじて耐えたが, 強い地震によ り崩壊したと考えられる。

(b)台風影響による斜面崩壊箇所

同様の斜面ではあるが,この位置では, 台風に起因する豪雨で斜面崩壊が発生し ている。これは、台風21号による大雨で 表層部が飽和し, 強度が低下して崩壊した ものと考えられる。

(c)地震影響による岩盤斜面の崩壊箇所

崩壊跡から,弱く固結した支笏火砕流 堆積物が確認される。これらの固結した 支笏火砕流堆積物は,ハンマーの打撃で 容易に割れ、斜面上に明瞭な湧水は見ら

れないものの、台風21号による大雨により、 岩盤亀裂内に水分が浸透し,岩体としての安 定性が低下しているところに, 強い地震 (震 度6弱)が発生し、崩壊したと推測される。

台風での崩壊箇所ではおもに径3~5cm程 度の浮石礫が目立ち,崩土は粘性で水分多い。 対して,台風及び地震による複合的な崩壊箇

図-4.3.12 支笏湖付近での降雨状況(気象庁)

図-4.3.13 斜面崩壊状況(地震災害)

図-4.3.14 斜面崩壊状況(台風による)

所では 10~ 20cm 程度の浮石礫が目立ち、台風災害箇所より粗く水分は少ない傾向がみられた。

4.3.2 豪雨に起因する斜面崩壊~平成 30 年 7 月豪雨

(1) 近畿地方の状況²⁵⁾²⁶

1)気象的特徴と被害概要

「平成30年7月豪雨」は、2018年6月28日から7月8日にかけて西日本から東海地方を中心に広い 範囲で観測史上1位の雨量を更新した記録的な大雨である。各時間降水量の観測史上1位を更新した地 点数を表-4.3.1 に示す(参考文献 25)に基づいて作成,地点数は当時の取りまとめ資料による)。特 に,48時間から72時間の降水量が多く,72時間降水量の記録更新地点は普段は比較的雨の少ない中国・ 四国地方の瀬戸内海側も含め、西日本から東海地方を中心に広い範囲に広がっていたことが大きな特徴 とされる。近畿地方では、西寄りの北部~中部に集中している(図-4.3.16)。過去の統計資料(1982 年1月1日~2018年7月10)から,近畿地方のアメダス66地点で観測された任意の3日間の72時間 降水量の総和が最も大きかったのは、紀伊半島大水害の原因となった 2011 年台風 12 号の発生時期であ るが(21,093.5 ミリ), 平成30年7月豪雨はそれに次ぐ2位であった(19,130.0 ミリ)。西日本から東海 地方を中心とした広域に持続的な大雨がもたらされたのは、非常に発達したオホーツク海高気圧と日本 の南東に張り出した太平洋高気圧との間に梅雨前線が停滞したためであり、前線に向けて極めて多量の 水蒸気が流れ込み続けるとともに、局地的に線状降水帯も形成された。図-4.3.17は、7月5日0時か ら9日0時までの4日間に抽出された線状降水帯の分布であり、近畿地方では京都府北部付近と大阪南 部~和歌山北部付近に2つの線状降水帯が確認される。大雨特別警報が発表された1府30県(近畿地 方は京都府と兵庫県)は、鳥取県を除いて線状降水帯の出現府県と一致している。人的物的被害が大き かったことから「平成最悪の水害」と言われ、全国の死者は237人で、近畿地方では9人(滋賀県高島 市:1人,京都府舞鶴市:1人,綾部市:3人,亀岡市:1人,兵庫県宍栗市:1人,猪名川町:1人, 奈良県大和郡山市:1人)が犠牲となった。

甘日月月	各時間降水量の観測史上1位を更新した地点数									
丹川日」	3時間	6時間	12時間	24時間	48時間	72時間				
2018年6月28日-2018年7月8日	16	31	48	76	124	122				

家屋への浸水や損壊被害も多く,国 管理河川は全国 22 水系 47 河川 346 箇所,都道府県管理河川は全国 69 水 系 268 河川で内水や溢水等が生じ, -28,469 件の浸水被害と 22,001 件の家 屋損壊が発生した。護岸損壊や河岸洗 掘,基盤漏水,堤防法崩れ・すべり, 河道閉塞等の河川管理施設等への被 害は、国管理河川は全国 34 水系 53 河川 144 箇所,都道府県管理河川は 109 水系 399 河川で発生した。近畿地 方の被害内訳を表-4.3.2 (参考文献 26 に基づいて作成)に示す。水資源 機構管理ダムでは、淀川水系の一庫ダ -ムで流木堆積と護岸被害が,日吉ダム -

表—4.3.2 近畿地方における河川被害箇所数

	水系	一般被害 (内水や溢水等)	河川管理施設等 (護岸損壊等)
国管理河川	由良川水系	33	6
国管理河川	淀川水系	1	4
国管理河川	大和川水系	9	3
国管理河川	円山川水系	4	5
国管理河川	加古川水系	4	2
国管理河川	揖保川水系	-	9
都道府県管理河川	由良川水系	2	5
都道府県管理河川	淀川水系	2	12
都道府県管理河川	高野川水系	1	-
都道府県管理河川	竹野川水系	2	2
都道府県管理河川	佐濃谷川水系	1	-
都道府県管理河川	加古川水系	3	-
都道府県管理河川	揖保川水系	1	2
都道府県管理河川	亀の川水系	1	_
計		82	50

で管理用道路法面崩落がそれぞれ生じた。

土砂災害については、内閣府の発表(平成31年1月9日17時現在、ただし土砂災害は国土交通省1 月9日15時現在情報に基づく)によると、全国1道2府29県で2.581件(がけ崩れ1734件、土石流 791 件,地すべり 56 件)発生した 26。近畿地方は 146 件で,がけ崩れ 108 件(全国比 6.2%),土石流 32件(全国比4.0%),地すべり6件(全国比10.7%)であり,全国比は少ない。がけ崩れは広島県(632 件)と愛媛県(325件)が突出して多く、山口県(173件)、高知県(121件)福岡県(109件)でも多

発した。同様に土石流も広島県(609件)と 愛媛県(81 件)が突出しており,図 4.3.16 や図 4.3.17 に認められる降水量の多い地域 で多発したと考えられる。一方、地すべり は徳島県(16件),岡山県(10件),愛媛県 (7件),長崎県(7件)で多く,広島県(1 件)は少なく、地形の影響が大きかったと 推察される。近畿地方では兵庫県でがけ崩 れが多くみられた。内訳を図-4.3.18 に示 す(参考文献26に基づいて作成)。

図-4.3.18 近畿地方の土砂災害発生件数

2) 土砂災害の発生とハザードマップ

土砂災害リスクの高い日本では、これまで砂防三法(砂防法、地すべり等防止法、急傾斜地の崩壊に よる災害の防止に関する法律(以下,急傾斜地法))に基づいて指定された砂防指定地,地すべり防止 区域、急傾斜地崩壊危険区域におけるハード対策が推進されてきた。また、旧建設省では急傾斜地崩壊 危険箇所、土石流危険渓流、地すべり危険箇所の調査が、林野庁では山腹崩壊危険地区、崩壊土砂流出 危険地区、地すべり危険地区の調査が実施され、全国的に土砂災害の危険性のある箇所が抽出されてき た。平成 11 年の広島豪雨災害後は、土砂災害警戒区域等における土砂災害防止対策の推進に関する法 律に基づいて土砂災害警戒区域,特別警戒区域の指定が進められ,各自治体によるハザードマップの作成と公開が推進された。初めは紙面で作成したものが住民に個別に配布されていたが,2019年3月現在ではweb上で公開している自治体も多い。各市町が単独で公開している場合もあれば,府県がまとめて公開している場合もある。ハザードマップには危険箇所の情報として,法律で定められた土砂災害警戒区域および特別警戒区域以外に,上記に記載した危険箇所や危険地区等の情報を合わせて公開している自治体もある(例えば兵庫県や和歌山県等)。

ここでは、近畿地方における平成 30 年 7 月豪雨による土砂災害発生箇所が、土砂災害警戒区域や危 険地区等に指定されていたか(災害発生前に土砂災害リスクを把握していたか)調査した結果を示す。 分析結果は、①指定有り、②指定無し、③不明(位置特定のデータ信頼度が低いもの)の3つに分類し た。土砂災害の形態と発生地点データは、公益社団法人地盤工学会、公益社団法人土木学会、公益社団 法人砂防学会, 公益社団法人日本地すべり学会, 一般社団法人応用地質学会で構成された平成 30 年 7 月豪雨災害関西調査団が、近畿地方の自治体から提供されたデータ(2018年10月10日提供時点)を 用いた。またリスク把握については、提供データに指定の有無が記載されている場合はそれを用い、無 い場合には土砂災害の発生地点データと自治体が公開するハザードマップを照合して指定の有無を調 査した。土砂災害警戒区域と特別警戒区域については、すべての災害箇所で指定の有無を調査した。ま た先述したその他の危険地区等については、提供データと公開データに基づいて可能な限り調査した。 発生地点によっては、複数の指定が重複している場合や、山中では人家がないため土砂災害警戒区域に は指定されていないが山腹崩壊危険区域に指定されている場合等がある。本調査では1つでも指定がか かっている場合には危険性を認識していたと解釈し、「指定あり」とした。土砂災害防止法に基づく区 域指定情報が提供された自治体は、兵庫県(土木)、京都府、和歌山県、大阪府、滋賀県である。砂防 三法に基づく指定地および区域指定情報が提供された自治体は、兵庫県(土木)、和歌山県、滋賀県で ある。奈良県と兵庫県(治山,六甲含む)については、地点データから指定の有無を調査したが、土砂 災害の範囲が明確でない地点が多く、信頼性が落ちることに留意されたい。各府県の分析結果を図ー 4.3.19 および表-4.3.3 に示す。調査結果から、ハザードマップに示されない指定区域外でも崩壊が発 生していることが見て取れる。指定されていない箇所をみると、「指定無し」の中には基礎調査要件を 満たない人家から離れた山麓,山中もあり、また「指定不明」の中には指定区域に近いもの、指定区域 に含まれる可能性が高いものも多くあったことから、概ね土砂災害リスクの把握はできるものと考えら れる。国土交通省の平成 30 年 8 月 15 日 13:00 時点の調査では,全国の土砂災害による死者 119 名の うち 107 名の被災位置が特定され、94 名が土砂災害警戒区域内で被災していることが確認された 27)。 このことから全国的にも危険箇所の認知は進んでおり、今後は警戒区域外等の危険箇所の抽出を推進す

るとともに、住民に対しては指定区域内においてはより積極的な早めの避難と、指定区域外でも土砂災 害が発生する可能性があること等を広く周知していく必要がある。外力(予測降水量)に基づく土砂災 害発生危険度の時間的な高まりについては、土砂災害警戒情報により提供される。7月豪雨では、34県 505 市町村で土砂災害警戒情報が発表された(国土交通省平成 30 年 7月 31 日時点調査)。人的被害が 発生した 53 箇所のうち、発災時刻が特定された全箇所(41 箇所)で土砂災害発生前に警戒情報が発表 されており 28, 警戒情報提供システムは有効に機能しているものと考えられる。洪水ハザードマップや 地震ハザードマップが想定外力に基づいた解析により、段階的な危険度評価が面的になされているのに 対して、土砂災害ハザードマップは基本的に指定された危険箇所(砂防三法による指定地や土砂災害警 戒区域等)が記載されている。現在の危険箇所は主に地形によって抽出されているため、災害発生に寄 与する因子や過去の被害状況を加味して、より安全側のハザードマップにしていく必要がある。またハ ザードマップの見方や土砂災害警戒情報発表の仕組みを利用者である住民等に丁寧に説明していく必 要がある。

	がけ崩れ 土石流						地すべり				詳細不明・その他				∽≣∔		
	指定有	指定無	不明	小計	指定有	指定無	不明	小計	指定有	指定無	不明	小計	指定有	指定無	不明	小計	
兵庫(土木)	23	12	0	35	9	3	0	12	0	0	0	0	0	0	0	0	47
兵庫(治山)	46	14	18	78	3	0	3	6	1	1	0	2	6	6	3	15	101
京都	21	4	4	29	6	5	1	12	1	3	0	4	0	1	0	1	46
和歌山	13	2	0	15	3	0	0	3	1	0	0	1	0	0	0	0	19
大阪	8	0	1	9	0	0	0	0	0	0	0	0	0	0	0	0	9
滋賀	6	1	0	7	0	0	0	0	0	0	0	0	0	0	0	0	7
奈良	1	2	0	3	0	0	0	0	0	0	0	0	0	0	0	0	3
小計	118	35	23	176	21	8	4	33	3	4	0	7	6	7	3	16	

表-4.3.3 平成30年7月豪雨による土砂災害箇所における警戒区域等指定状況(内訳)

(2) 中国四国地方の状況~現地見学会より~

1) 広島県広島市安芸区海田町畝の土石流

本調査地は、広島市安芸区海田町畝の瀬野川流域楠木谷川の未対 策危険渓流に土石流が発生し、被災した箇所である。土木学会中国 支部の調査報告では土石流の規模は 5000m³ 以上と推定されている が、死者はなかった³⁰⁾。土石流は神社(春日神社)の境内を通過し、 参道を流下して、参道の両側に広がる民家に流入した。

神社の社殿は幸いに被害を免れているが、社殿は、大正12年7月 (1923年)の豪雨の際に土石流によって崩壊流失の後に、場所を変 えて現在の位置に再建された。過去の被害を経験したことで土石流 が流下する位置から、より安全な現在の位置へ移設された結果と考 えられる(図-4.3.22)。

土石流出部の中流域まで踏査したが、風化した表土が流失したあとの渓流床の表面は新鮮で平滑な花

崗岩が露出し,流路床には水が流れている(図-4.3.23)。新鮮な岩が風 化によって土砂化し,流入雨水による風化した土砂層の地下水上昇と抵 抗力のバランスが崩れた際に土石流が発生すると考えられる。

図-4.3.23 渓流床状況

2)安芸郡坂町小屋浦の土石流災害

本調査地は、広島県安芸郡坂町小屋浦で発生した大規模土石流発生 箇所であり、15名の住民が亡くなられている。本調査地の土砂災害の 特徴は、多数の渓流から土石流が流入し、流域全体が被災したこと にある³⁰⁾(図-4.3.25,図-4.3.26)。

また,本調査地では明治40年7月(1907年)に死者44名を出す土 砂災害が発生した場所で(図-4.3.27),その災害の復旧事業で設けら れた砂防ダムや流路工,落差工が今回発生した土石流で消失しており, そのエネルギーの大きさを実感した(図-4.3.28,図-4.3.29)。

調査時に現地では土石流により住宅地に流入,堆積した土砂は概ね 撤去されていたが,土石流によって流下してきた巨石(コアストーン)

が各所に残されており(図-4.3.30),これらの巨石(コアストーン)の流下が被害を大きくしたと考えられる。

図-4.3.25 被災状況 32)

図-4.3.26 崩壊地等分布図(ライン)³²⁾

3) 愛媛県大洲市·西予市

調査日:11月10日(日)

調查者:大島委員長,石田,立石,鳥居,永井,鍋島,南部,林,深川,宮田

調查協力:愛媛大学山本浩司教授

主に地盤災害に関わる調査箇所の被災状況結果について記載する。以下に,調査対象箇所の位置図を 示す。

図-4.3.31 調査地点位置図

(a) 斜面崩壞

幅 20m,長さ 15m 程度の表層崩壊である。斜面勾配は 30~40°以上を呈しており,非常に急峻であ る。斜面脚部に落石防護柵が設置されているが,崩壊箇所は仮設防護柵が設置されている。斜面崩壊が 発生し,崩壊土砂の大きな衝撃力が落石防護柵に作用することで,防護柵が変状・倒壊したものと考え られる。

図-4.3.32 現地状況写真

(b) EPS 道路基礎損壞

道路の川側に設置された EPS 構造物の基礎が損壊し,現道まで崩壊影響が及んでいる。構造物内に水 抜き暗渠が設置され,水路工が整備され導水されている。道路斜面側が集水地形を呈しており,水抜き 暗渠からは常時流水が認められることから,豪雨によって大量の流水が集まり構造物周辺の基礎地盤が 不安定化した可能性が考えられる。

図-4.3.33 現地状況写真

(c) 野村ダム斜面崩壊

野村ダム本体工の斜面部における表層崩壊である。幅 10m,長さ 15m,崩壊深さは 1m 程度である。 崖錐堆積物を主としている。斜面勾配が急勾配であり,豪雨によって表層土が不安定化し崩壊に至った ものと考えられる。斜面脚部には高さ 2m 程度の擁壁工が設置されているが,倒壊などの大きな変状は 認められない。

図-4.3.34 現地状況写真

(d) 明間地区擁壁倒壞

道路に接する斜面が崩壊し,道路まで土砂が流出しさらに越流して道路下まで崩壊土砂の到達が認められる。斜面脚部には高さ4~5m程度の擁壁が設置されているが,崩壊中央部では土砂の流出とともに 擁壁が破壊されている。崩壊面に分布する不安定化した土砂は含水が高く,一部粘土化している。擁壁 上部にはコンクリート構造物で保護されていたものと考えられるが,斜面崩壊により構造物の倒壊が認 められる。

図-4.3.35 現地状況写真

4.3.3 阿蘇地域における地震と豪雨の複合的影響の分析事例

斜面崩壊の誘因の中には、複数の誘因が合わさった複合誘因と呼ばれるものがあり、それを起因とし て発生する斜面崩壊を予測するのは、複数の誘因について検討しなければならないため、その予測が困 難であるといえる。我が国では、複合誘因の中でも、特に地震と降雨による斜面崩壊は、前述したよう に様々な地域で発生していることが報告されている。

斜面崩壊の起こりやすさの条件を知ることは、斜面崩壊発生の予知・予測にとって重要な情報の1つである。本節では、斜面崩壊の起こりやすさの条件として、崩壊発生地の地形条件に着目し、2016年4月の熊本地震ならびにその後の降雨により熊本県阿蘇地域に位置する阿蘇カルデラ内で発生した斜面崩壊地を対象に地形立地解析を行い、地震ならびにその後の降雨による斜面崩壊地の地形的特徴を明らかにすることで、斜面崩壊への地震と降雨の複合的影響について検討する。

(1) 熊本地震ならびにその後の降雨により発生した斜面崩壊

図-4.3.36 に防災科学研究所が作成している土砂移動分布図 ³²⁾に記載されている阿蘇カルデラ内で 発生した斜面崩壊地の崩壊分布図を示す。この図に記載されている地震後の降雨による崩壊は,地震発 生後から5月30日までの間に降雨により発生した斜面崩壊地が示されている。これによると,地震に よる崩壊個数は1894箇所,地震後の降雨による崩壊個数は51箇所であった。地震直後から5月30日 までの中で最も日降水量が多かった5月10日のハイエトグラフを図-4.3.37に示すとともに,比較の

図-4.3.36 平成28年熊本地震ならびにその後の降雨(5月30日まで)による斜面崩壊地分布

ため,過去の豪雨災害時(平成2年,平成24年)のハイエトグラフを図ー4.3.38, 図ー4.3.39 にそれ ぞれ示す³⁴⁾。これらの図より,地震後の降雨により発生した斜面崩壊は,地震時の崩壊に比してかなり 少ない発生数であったものの,時間雨量,連続雨量ともに過去の豪雨災害時の雨量に比して非常に少な い降雨で崩壊が発生していたといえ,過去の地震後の降雨による斜面崩壊と同様の傾向であったといえ る。

図-4.3.37 平成28年5月10日のハイエトグラフ(アメダス阿蘇山観測所)

図-4.3.38 平成2年7月1日のハイエトグラフ(アメダス阿蘇山観測所)

図-4.3.39 平成24年7月11日のハイエトグラフ(アメダス阿蘇山観測所)

地震による斜面崩壊地と地震後の降雨による斜面崩壊地がどのような関係であったのかを明らかにす るため、土砂移動分布図³²⁾より崩壊発生状況を求めた。具体的には、地震後の降雨による斜面崩壊地と 地震による斜面崩壊地との位置関係(図-4.3.40参照)を土砂移動分布図³²⁾から読み取り、崩壊発生 状況を新規崩壊と地震による崩壊地の拡大(以下、拡大崩壊と称する)に分類した結果を図-4.3.41 に示す。

図-4.3.41より,地震後の降雨により発生した崩壊地は,新規崩壊が80.4%と非常に多く,拡大崩壊は わずかに19.6%であったことがわかる。これは,兵庫県南部地震後の降雨による斜面崩壊地と同様の傾 向³⁵⁾を示しており,このことは,地震後の降雨に伴って発生する斜面災害の軽減を考えるためには,地 震時には崩壊が発生しなかった斜面での新規崩壊の発生について懸念する必要があるといえる.

図-4.3.40 崩壊発生状況

図-4.3.41 崩壊発生状況の調査結果

(2) 地形立地解析

防災科学研究所が作成している土砂移動分布図 ³³に記載されている斜面崩壊地を対象に,国土地理院 が整備している 10m 標高メッシュ ³⁴を用いて地形立地解析を行う。具体的には,10m 標高メッシュか ら数値標高モデル (DEM) を作成し,数値標高モデルから地形特性値(標高,傾向面の傾斜,傾向面の 偏差,横断面曲率,縦断面曲率,斜面方位角)を算出する。なお,図-4.3.42,図-4.3.43 に示した斜 面崩壊地の崩壊面積(土砂移動分布図 ³²⁾のデータより作成したため,崩壊源だけでなく削剥域も含まれ ているため本来の崩壊面積よりは大きく示されていると考えられる)の度数分布を参考に,1辺が約 25m (24.7m)のメッシュを地形特性値算定のための基本セルとし,12.35m 間隔の数値標高モデルの格子点 毎に地形特性値を計算することとした。また,斜面崩壊地の最高標高点を含む基本セルを崩壊セル定義 とした(図-4.3.44 参照)。なお,一部の基本セルについては崩壊の最高標高点は含んでいるものの,崩 壊地がほとんどその基本セルに含まれていなかったため,その場合は形状から判断してその基本セルの 流下方向の基本セルを崩壊セルと定義することとした。

斜面崩壊地の地形立地解析を行う際,通常,斜面崩壊地のみを対象として地形立地解析が行われること が多いが,崩れやすい斜面の地形条件を検討するためには,バックグラウンドである山体全体を母集団 として,それらと斜面崩壊地を比較・検討する必要がある。図-4.3.45に示すように,カルデラ内の火 山の岩石は,噴火した年代の古い順に中期更新世(約78万1000年前~約12万6000年前),後期更新

4-47

世(約12万6000年前~約1万1700年前),完新世(約1万1700年前~現在)の3種類の地質に分類 されることから、本節では、地質の形成された年代による地表面の浸食状況などの違いを考慮して、分 類した地質をそれぞれの母集団として設定することとした。各地質における崩壊セル数は、地震による 斜面崩壊では、中期更新世が343個、後期更新世が1239個、更新世が312個、地震後の降雨による崩 壊では、中期更新世が41箇所、後期更新世が9箇所、更新世が1箇所であった。

図-4.3.42 崩壊面積度数分布(熊本地震)

図-4.3.43 崩壊面積度数分布(地震後の降雨)

図-4.3.45 崩壊セル分布 (背景の地質図は、シームレス地質図³⁶⁾のデータを使用して作成)

図-4.3.46 に地形特性値を求める際に用いた9点法の基本セルを示し,以下に算出した地形特性値の 定義式を示す。

図-4.3.46 9 点法の基本セル

(a) 標高

基本セルの標高は、中心の標高である H9の標高(m)とする。

(b) 傾向面の傾斜

傾向面の傾斜は、傾向面の傾斜の度合いを示す値であり、式(4.3.2)にその算出式を示す。

$$\theta = \tan^{-1} \frac{\sqrt{A^2 + B^2}}{6D}$$
(4.3.2)

ここに、 $A = H_1 - H_3 + H_4 - H_5 + H_6 - H_8$ $B = H_1 + H_2 + H_3 - H_6 - H_7 - H_8$ θ :傾向面の傾斜(°) D:格子間隔(=12.35m)

(c) 横断面曲率, 縱断面曲率

曲率は地表面のメッシュ内の地形が凸面か凹面かを明らかにするために求める値である。曲率には、 横断面曲率と縦断面曲率の2種類があり、横断面曲率は傾斜角の方向に鉛直な地表面の曲率で、縦断面 曲率は傾斜角の方向に平行な地表面の曲率である。また、横断面曲率は式(4.3.3)を用いてXの値を算 出し、その値が正の場合は式(4.3.4)、負の場合は式(4.3.5)、0の場合は式(4.3.6)にそれぞれ代入し て算出される。縦断面曲率は(4.3.7)を用いてYの値を算出し、その値が正の場合は式(4.3.4)、負の 場合は式(4.3.5)、0の場合は式(4.3.6)にそれぞれ代入して算出される。ただし、凸型を正、凹型を負 とする。

$$X = \frac{(a-b)\cdot(D^2 - a\cdot b)}{2D(a+b)}$$
(4.3.3)

$$CV = \frac{l}{\sqrt{X^2 + Y^2}}$$
(4.3.4) (4.3.4)

$$CV = \frac{-1}{\sqrt{X^2 + Y^2}}$$
(4.3.5) (4.3.5)

$$CV = 0$$
 (a+b=0) (4.3.6)

$$Y = \frac{2D^2 + a^2 + b^2}{2(a+b)}$$
(4.3.7)

- ここに, CV:曲率(対象格子点を通る8方向の断面のうち,最も大きな傾斜を示す方向を縦断方向, それに直行する方向を横断方向)
 - a:上流側の比高(m)
 - b:下流側の比高(m)
 - D:格子間隔(=12.35m)

(d) 斜面方位角

斜面方位角は、一次傾向面の法線ベクトルを水平面に斜影し、真北方位のベクトルとのなす角として、 式(4.3.8)、(4.3.9)より算出される(図-4.3.55 参照)。

$$\theta_a = \cos^{-1} \frac{-B}{\sqrt{A^2 + B^2}}$$
 (4.3.8)
(4.3.8)

$$\theta_a = 360 - \cos^{-1} \frac{-B}{\sqrt{A^2 + B^2}}$$
 (4.3.9)
(7.7%) (4.3.9)

ここに, *θ_a*:斜面方位角(°)

図-4.3.47 斜面方位角の定義(9点法)

(3) 地形立地解析結果

前述したように地質毎の母集団から見た斜面崩壊地の地形的特徴について述べるため、以下では式 (4.3.10)で算出した崩壊発生率の算出結果のみを示すこととする。なお、後述する崩壊発生率の平均 とは、地質内の崩壊セルの個数が地質内全域の総基本セル数に占める割合を百分率で表したものである。 また、完新世での地震後の降雨による斜面崩壊数は1個であったため、対象外とした。

$$A_N = \frac{F_N}{B_N} \times 100 \tag{4.3.10}$$

ここで、 A_N =地形特性値のランク毎の崩壊発生率(%) B_N =地形特性値のランク毎の地質全体の基本セル数(個) F_N =地形特性値のランク毎の崩壊セル数(個)

(a) 標高

図-4.3.48 に標高の地震による斜面崩壊地の崩壊発生率ならびに地震後の降雨による斜面崩壊地の 崩壊発生率をそれぞれ示す。

a) 地震による斜面崩壊地

b) 地震後の降雨による斜面崩壊地

図-4.3.48 崩壊発生率(標高)

図-4.3.48a)より,地震による斜面崩壊は,中期更新世の地質では,1200m以上で崩壊発生率が0.8% を示しており,中期更新世の地質における崩壊発生率の平均値0.04%と比較すると,1200m以上の標高 を有する場所で崩壊が発生しやすかったといえる。後期更新世の地質では,700~1100m で崩壊発生率 がそれぞれ約0.5%を示しており,後期更新世の地質における崩壊発生率の平均値0.26%と比較すると, 700~1100m の標高を有する場所で崩壊が発生しやすかったといえる。完新世の地質では,1000~1200 mで崩壊発生率が約0.4%を示しており,完新世の地質における崩壊発生率の平均値0.1%と比較すると 1000~1200mの標高を有する場所で崩壊が発生しやすかったといえる。これらの結果から,各地質に共 通して,地質内の標高の高い場所(比高の高い場所)での崩壊が発生しやすかったといえ,斜面の上方 の方が下方と比較して地震動が増幅されやすいため,このような傾向になったものと考えられる。

図-4.3.48b)より,地震後の降雨による斜面崩壊は,中期更新世の地質では,100~400mでそれぞれ約 0.025~0.03%を示しており,崩壊発生率の平均値 0.005%と比較すると,100~400mの標高を有する場所で崩壊が発生しやすかったといえる。後期更新世の地質では,400~600mの斜面で約 0.003~0.005%
を示しており、崩壊発生率の平均値 0.002%と比較すると、400~500mの標高を有する場所で崩壊が発 生しやすかったといえる。いずれの地質でも、地震による崩壊とは異なり、斜面の中腹から下方側にお いて崩壊発生率が高くなっており、このような場所は降雨時に斜面崩壊が発生しやすい場所(降雨が比 較的集まりやすい場所)であるといえる。

(b) 傾向面の傾斜

図-4.3.49 に傾向面の傾斜の地震による斜面崩壊地の崩壊発生率ならびに地震後の降雨による斜面 崩壊地の崩壊発生率をそれぞれ示す。

図-4.3.49a)より,地震による斜面崩壊は,中期更新世の地質では,60°以上の急傾斜地で崩壊発生 率が0.25%以上を示しており,崩壊発生率の平均値0.04%と比較すると,60°以上の急傾斜地で崩壊が 発生しやすかったといえる。後期更新世の地質では,20°以上で崩壊発生率が約0.3%以上を示してお り,崩壊発生率の平均値0.26%と比較すると,傾斜が20°より急傾斜になればなるほど崩壊が発生しや すかったといえる。完新世の地質では,20~40°の傾斜値で崩壊発生率が約0.2%を示しており,崩壊 発生率の平均値0.1%と比較すると,20~40°の傾斜を有する場所で崩壊が発生しやすかったといえる。 完新世の地質以外は,地質内の比較的急傾斜の場所で崩壊が発生しやすかったといえ,過去の地震時の 事例と同様の傾向であったといえる。

図-4.3.49b)より,地震後の降雨による斜面崩壊は,中期更新世の地質では,傾斜50~60°で崩壊発 生率が約0.025%を示しており,崩壊発生率の平均値0.005%と比較すると,傾斜50~60°の急傾斜の 場所で崩壊が発生しやすかったといえる。後期更新世の地質では,傾斜,0~10°,30~40°の斜面で 崩壊発生率がそれぞれ約0.003%を示しており,崩壊発生率の平均値0.002%と比較すると,傾斜が0~ 10°,30~40°の場所で崩壊が発生しやすかったといえる。中期更新世での斜面崩壊地については,地 震と比較すると傾斜は緩くなるものの,斜面としては急傾斜の場所で崩壊が発生しやすかったといえる が,後期更新世については,そのような傾向は見られなかった。

(c) 横断面曲率

図-4.3.58 に横断面曲率の地震による斜面崩壊地の崩壊発生率ならびに地震後の降雨による斜面崩 壊地の崩壊発生率をそれぞれ示す。

図-4.3.50a)より,地震による斜面崩壊は,中期更新世の地質では,横断面曲率の値の違いによる崩 壊のしやすさの明瞭な差は見られないが,平行型に比べると,尾根型や谷型といった凹凸のある斜面の 方が崩壊しやすかったといえる。後期更新世の地質では,その傾向がより顕著で,より尾根型やより谷 型といった凹凸のある斜面の方が崩壊しやすかったといえる。完新世の地質では,谷型よりも尾根型の 場所の方が崩壊しやすかったといえる。一般に,地震による斜面崩壊は,地震動が増幅しやすい尾根型 の斜面で,降雨による斜面崩壊は集水性の高い谷型で起こりやすいといわれており,完新世で発生した 斜面崩壊地の傾向は,過去の地震時の事例と同様の傾向であったといえる。

図-4.3.50b)より,地震後の降雨による斜面崩壊は,中期更新世の地質では,横断面形曲率が0.04~0.05の尾根型の斜面で崩壊発生率が約0.025%と高く,崩壊発生率の平均値0.005%と比較すると,より 尾根型の斜面の場所での崩壊が発生しやすかったといえる。後期更新世では,横断曲率が-0.01~0.01の 平行型斜面で崩壊発生率が約0.025%と高く,崩壊発生率の平均値0.002%と比較すると,平行型の斜面 の場所での崩壊が発生しやすかったといえる。中期更新世の地質で発生した斜面崩壊は,最終的な誘因 は降雨であったにもかかわらず,地震時に崩壊が起こりやすい場所で崩壊が起こりやすかったといえる。

(d) 縦断面曲率

図-4.3.51 に縦断面曲率の地震による斜面崩壊地の崩壊発生率ならびに地震後の降雨による斜面崩 壊地の崩壊発生率をそれぞれ示す。

図-4.3.51a)より,地震による斜面崩壊は,中期更新世の地質では,横断面曲率と同様に縦断面曲率 の値の違いによる明瞭な差は見られなかったが,直線型に比べると,凸型や凹型といった凹凸のある場 所の方が崩壊しやすかったといえる。後期更新世の地質では,縦断面曲率が凹型よりも凸型の方がやや 崩壊しやすかったといえる。完新世の地質では,凸型や凹型といった凹凸のある斜面の方が崩壊しやす かったといえる。いずれの地質でも,直線型よりは凹凸のある場所での崩壊がしやすかったといえる。

図-4.3.51b)より,地震後の降雨による斜面崩壊は,中期更新世の地質では,凸型よりも谷型の方が 崩壊発生率の高い場所が多く,凹型の斜面の場所での崩壊が発生しやすかったといえる。後期更新世は, 凸型の場所での崩壊はなく,平行型や凹型が発生しやすかったといえ,降雨時に崩壊が起こりやすい場 所で崩壊が起こりやすかったといえる。

(e) 斜面方位角

図-4.3.52 に斜面方位角の地震による斜面崩壊地の崩壊発生率ならびに地震後の降雨による斜面崩 壊地の崩壊発生率をそれぞれ示す。

図-4.3.52 崩壊発生率(斜面方位角)

図-4.3.52a)より,地震による斜面崩壊は,中期更新世の地質では,斜面方位角の違いによる崩壊の しやすさの明瞭な差は見られないが,北東から南西向きの斜面の場所で崩壊発生率の平均値 0.04%を超 えており,これらの場所での崩壊がしやすかったといえる。後期更新世の地質では,東から南南西向き の斜面の場所で崩壊発生率の平均値 0.26%を超えており,これらの場所での崩壊がしやすかったといえ る。完新世の地質では,北東から南南東向きの斜面の場所で崩壊発生率の平均値 0.1%を超えており, これらの場所での崩壊がしやすかったといえる。いずれの地質においても,やや東向きの斜面での崩壊 発生率が高い値を示しており,地震動の揺れが南東方向より東西方向に卓越していた³⁷⁾ため,地震動の影響を受け易い斜面方向の場所で崩壊が発生しやすかったといえる。

図-4.3.520b)より,地震後の降雨による斜面崩壊は,中期更新世の地質では,南から西南西向きの 斜面の場所で崩壊発生率の平均値 0.005%を大きく超えており,これらの場所での崩壊がしやすかった といえる。後期更新世の地質では,南西から西南西,北西向きの斜面の場所で崩壊発生率の平均値0.002% を大きく超えており,これらの場所での崩壊がしやすかったといえる。いずれの地質でも,地震時とは 反対にやや西向き斜面での崩壊が発生しやすかったといえる。

(4) 地形立地解析結果のまとめ

以上の結果をまとめたものを表-4.3.4に示す。

地質	地震による斜面崩壊	地震後の降雨による斜面崩壊
中期更新世	標高:比高が高い 傾斜:60 [°] 以上の急傾斜地 横断面形状:尾根型や谷型 縦断面形状:凸型や凹型 斜面方位:北東から南西向き	標高:比高は中程度 傾斜:50~60 [°] の急傾斜地 横断面形状:尾根型 縦断面形状:凸型よりも谷型 斜面方位:南から西南西向き
後期更新世	標高:比高が高い 傾斜:20°より急傾斜になるほど 横断面形状:尾根型や谷型 縦断面形状:凹型よりも凸型 斜面方位:東から南南西向き	標高:比高が低い 傾斜:0~10°, 30~40°の場所 横断面形状:平行型 縦断面形状:平行型や凹型 斜面方位:南西から西南西,北西向き
完新世	標高:比高が高い 傾斜:20~40°の場所 横断面形状:谷型よりも尾根型 縦断面形状:凸型や凹型 斜面方位:北東から南南東向き	

表-4.3.4 斜面崩壊地の地形的特徴

表-4.3.4 より,地震による斜面崩壊地の地形的特徴としては,その地質内において比高が高い場所, 急傾斜の場所,凹凸の大きい場所といったように過去の地震時に斜面崩壊が起こりやすいとされている ような地形条件を有する場所で崩壊が起こっていたことが分かる。一方,地震後の降雨による斜面崩壊 地の地形的特徴としては,地形条件によっては,降雨よりも地震時に斜面崩壊が起こりやすいような場 所でも斜面崩壊が発生しやすくなっており,過去の降雨に比べるとかなり少ない降雨量で斜面崩壊が発 生した原因の1つとして,地震動の影響を受けたが崩壊に至らなかった斜面がその後の少雨により崩壊 したものと考えられ,中期更新世の地質で発生した斜面崩壊ほどその傾向が強いといえる。

4.4 まとめ・考察

4.4.1 盛土における土砂災害について

近年,地盤情報データベースが広く利用されるようになってきた。しかし,それらは基礎地盤の情報 であり,造成地に関しては情報がない状態である。本報告にあるように,基礎地盤上の造成地において は,基礎地盤からの盛り立て厚さによって地盤の振動特性が変化する傾向が明らかである。また,降雨, 蒸発といった自然の乾湿条件の中で,その品質は時々刻々と変化している。現在,宅地造成等規制法に よって,地盤災害リスクを含む場所における盛土などについては,規制が設けられているだけでなく, 生活空間に既存の造成地を含む市民の防災意識啓発に向けた取り組みとして,造成地マップを公開して いる市町村もある^{例えば38)}。豪雨災害が局所化するとともに,突発的な地震との複合的なリスクを考慮す ると,既存のハザードマップの情報に加えて,潜在的なリスクの理解が必要となる。

また,より詳細な造成履歴を把握する方法として,物理探査の可能性について検討した。物理探査に ついては間接的な物理量の分布によって地盤性状を評価するため,地盤定数などの定量的評価について は他の物理試験との併用を必要とするものの,探査測線内の定性的な地盤性状把握については有効であ ることが示された。

4.4.2 自然斜面における土砂災害について

地震時に発生する土砂災害による人的被害は,過去の地震の例を見ても決して少なくない(図-4.4.1 参照)³⁹⁾。しかしながら,地震により同時多発的に斜面崩壊が発生することを想定すると,すべての箇 所に対してハード対策を施すことは極めて困難であり,既存のハザードマップをはじめとした予防的な ソフト対策が非常に重要である。そのためには,過去の斜面崩壊の発生形態を踏まえ,地域の地形・地 質的な特性を把握したうえで,地震,豪雨,あるいはそれらの複合する誘因によって発生する斜面崩壊 のリスクを想定しておく必要がある。

特に、地震後には土砂災害のリスクが高まり、実際の災害事例においても低強度の降雨でも土砂災害 が発生し被害を及ぼすことが懸念されるほか、土砂災害警戒区域、土砂災害危険箇所以外の場所におい て土砂災害が発生する事象が確認されている。したがって、土砂災害のハザードマップによる土砂災害 警戒区域等への警戒のみならず、その発生位置が広範囲にわたる、あるいは大規模なものとなる可能性 を考慮し、より高いレベルの警戒態勢をとる必要がある。

当委員会における災害現場の現地見学会(平成 30 年度岡山県,広島県)においても確認されたよう に,被災履歴のある場所で土砂災害が繰り返して発生している。本研究では,阿蘇地域を対象として一 事例を示したが,過去の斜面崩壊のデータを蓄積・分析するとともに,航空レーザー測量による精緻な 地形データや地質データ等を用いることで,斜面崩壊のリスクを予備的に抽出し,被害軽減へつなげて いくことが望まれる。

図-4.4.1 原因別犠牲者数³⁹⁾

2 章参考文献

- 中村豊,上野真(1986):地表面震動の上下成分と水平成分を利用した表層地盤特性推定の試み,第
 7回日本地震工学シンポジウム,pp.265-270.
- 平井, 鍋島(2012):東北地方太平洋沖地震で被害を受けた宅地における常時微動観測,第47回地盤 工学研究発表会, pp.1475~1476, 2012.
- 3) 和歌山市:大規模盛土造成地マップ:和歌山市 H.P.

http://www.city.wakayama.wakayama.jp/kurashi/douro_kouen_machi/1009501/1009507/1002223.htm (2019.2.22 取得)

- 4) 地盤工学会関西支部:南海トラフ巨大地震に関する被害予測と防災対策研究委員会 報告書, pp.2-323~2-340, H28.3
- 5) 地図・空中写真閲覧サービス:国土地理院 HP, http://mapps.gsi.go.jp/(2019.2.22 取得)
- 6) 地盤調査の方法と解説 (2013): 地盤工学会
- 7) Imai, T. and Tonouchi, K.(1982): Correlation of N-value with S-wave velocity and shear modulus, Proceedings of the second European symposium on penetration testing, pp.67-72.
- 8) 平野昌繁,石井孝行(1995):兵庫県南部地震による断層の活動と斜面崩壊,平成7年度講話会資料 「阪神・淡路大震災のそこが知りたい-斜面崩壊の分布とその特徴-」,pp.17-22,地盤工学会関西 支部
- 9) 沖村孝(1996):6 六甲山地における山腹斜面の崩壊,兵庫県南部地震と地形災害,pp.110-126,古 今書院
- 10) 田中茂(1972):集中豪雨による斜面崩壊の本質的検討,施工技術, Vol.5, No.11, pp.14-21,日刊工 業新聞社
- 11) 鳥居宣之(2008): 地震を起因とする盛土ならびに自然斜面の崩壊発生機構とその危険度評価に関する研究,神戸大学大学院博士論文, 197p.

- 12) 建設省国土地理院(1994):数値地図表示・閲覧ソフトウェア・マニュアルー数値地図 50m・250m
 メッシュ(標高) -, 31p., 日本地図センター
- 13) 建設省六甲砂防工事事務所(1995):崩壊地拡大分布図(1/10,000)
- 14) 冨田陽子, 桜井亘, 中庸充(1996): 六甲山系における地震後の降雨による崩壊地の拡大について, 新砂防, Vol.48, No.6, pp.15-21, 砂防学会
- 15) 東京大学地震研究所(2005): 2004 年新潟県中越地震一強震動と震源過程一,東京大学地震研究所 HP:http://taro.eri.u-tokyo.ac.jp/saigai/chuetsu/chuetsu.html
- 16) 柳沢幸夫・小林厳雄・竹内圭史・立石雅昭・茅原一也(1986):小千谷地域の地質,地域地質研究報告(5万分の1図幅),地質調査所,177p.
- 17) 防災科学技術研究所(2004):山古志村周辺地すべり地形分布図
- 18)降雨と地震の複合災害に対する斜面崩壊機構と安定性評価に関する研究委員会:降雨と地震に対する斜面崩壊機構と安定性評価に関するシンポジウム発表論文集
- 19) 内閣府(2018):平成 28 年(2016 年) 熊本県熊本地方を震源とする地震に係る被害状況等について(平成 30 年 10 月 15 日 12 時現在),内閣府防災情報のページ
 http://www.bousai.go.jp/updates/h280414jishin/pdf/h280414jishin_53.pdf>(参照 2019.1.18).
- 20) 国土交通省(2016):平成 28 年熊本地震による土砂災害の概要(平成 28 年 9 月 14 日時点), <
 http://www.mlit.go.jp/river/sabo/jirei/h28dosha/160914_gaiyou_sokuhou.pdf>(参照 2019.1.18), 国土交通省水管理・国土保全局砂防部
- 21) 平成 28 年熊本地震に係る土砂災害緊急調査団(2016):熊本地震から学ぶ地震と土砂災害,平成 28 年度(公社)砂防学会講習会,公益社団法人砂防学会
- 22) 熊本地方気象台(2016): 災害時気象資料—平成 28 年 6 月 19 日から 23 日にかけての熊本県の大雨 について—
- 23) 笠間清伸, 北園芳人, 矢ヶ部秀美(2017): 平成 28 年熊本地震に起因した斜面災害に関する現地調 査報告, 地盤工学会誌, 65-4(711), pp.8-11, 地盤工学会
- 24) 若月強(2016):平成 28 年熊本地震による土砂災害の特徴,「平成 28 年(2016 年)熊本地震」報告会 ~防災科学技術研究所 最初の 3 ヶ月間の取り組み~講演資料,国立研究開発法人防災科学技術研 究所
- 25) 気象庁(2019):「平成 30 年 7 月豪雨」及び 7 月中旬以降の記録的な高温の特徴と要因について、平成 30 年 8 月 10 日報道発表資料. pp.1-23.
- 26) 内閣府(2019):平成30年7月豪雨による被害状況等について(平成31年1月9日17時00分現在), pp.1~204.
- 27) 国土交通省(2018): H30.7 豪雨人的被害箇所における土砂災害防止法に基づく警戒区域指定状況.
- 28) 国土交通省水管理・国土保全局砂防部(2018):平成 30 年 7 月豪雨による土砂災害概要<速報版>.
- 29) 国土地理院ホームページ 地理院地図:http://www.gsi.go.jp/BOUSAI/H30.taihuu7gou.html#6
- 30) 土木学会中国支部調查報告: http://committees.jsce.or.jp/chugoku/node/107
- 31) 国土地理院ホームページ 平成 30 年 7 月豪雨に関する情報: http://www.gsi.go.jp/BOUSAI/H30.taihuu7gou.html#3
- 32) 防災科学研究所(2016): 熊本地震による土砂移動分布図, http://www.bosai.go.jp/mizu/dosha.html
- 33) 気象庁(2019):過去の気象データ・ダウンロード,(アメダス観測所「阿蘇山」)

http://www.jma.go.jp/jma/menu/menureport.html

- 34) 国土地理院(2019): 基盤地図情報, https://fgd.gsi.go.jp/download/menu.php
- 35) 鳥居宣之(2008): 地震を起因とする盛土ならびに自然斜面の崩壊発生機構とその危険度評価に関す る研究,神戸大学大学院博士論文,197p.
- 36) 地質調査総合センター (2019): 20 万分の 1 日本シームレス地質図 (シェープファイル), https://gbank.gsj.jp/seamless/index.html?lang=ja&p=download
- 37) 気象庁(2019): 平成 28 年熊本地震 強震波形 熊本県南阿蘇村中松, http://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/1604160125 kumamoto/index.html
- 38) 大阪府 HP: 大規模盛土造成地マップ, http://www.pref.osaka.lg.jp/kenchikubosai/kikaku_bousai/index.html
- 39) 牛山素行, 横幕早季, 杉村晃一 (2015): 平成 28 年熊本地震による人的被害の特徴, 自然災害科学 J. JSNDS 35 -3 203 -215, pp.203-215, 日本自然災害学会

5章 防災ハザードマップに関する研究

5.1 ハザードマップツールの整備

5.1.1 オープンデータの整備

(1) オープンデータに関する近年の動向

自治体によってハザードマップの整備が順次進められている.地震災害を除いたハザードマップの 整備状況 ¹)は, **図-5.1.1**に表されるように水害を中心にほぼ全ての自治体で対応がなされている状況 である。また,全国的な地震ハザード評価として全国地震動予測地図や地震ハザードステーション (J-SHIS) といった取り組みが進められている。しかしながら,これらのハザードデータは一般に画 像データのみが公開されていることが多く,自由にデータを入手して実務に活用することは容易では ない。J-SHIS では,微地形区分に基づいて評価された平均 S 波速度(Vs30) と震度増幅度が公開さ れている。また,Web API での利用も可能となっている。

一方,研究成果や統計等におけるデータの取り扱いは,近年少しずつ法的にも制度的にも整備され つつある状況である。例えば,政府の統合イノーベーション戦略 20の中で「Society5.0 実現に向けた データ連携基盤の整備」が掲げられている。組織や分野を越えたデータの利活用等を通じて新たな価 値を創出することを目的としていて,インフラ分野においても非常に重要な課題と言える。ただし, データのオープン化による利点と欠点は理解しておく必要がある。具体的には特許に関わるような知 財を公開することは企業にとって望ましいものではない。このため,オープンデータを扱おうとする 場合には,オープン&クローズ戦略を意識して議論を進めることが必要である。また,データの公開 にあたっては著作権等の権利関係についても整理しておく必要がある。

(2) オープンデータの整理

本 WG では, ハザード評価に関するデータについて以下のように 2 つの形式での公開を検討することとした。

1. 一般市民を対象とした, 揺れやすさマップ等の画像データ

2. 実務者を対象とした,揺れやすさマップの元となるサンプルデータ

揺れやすさマップの元となるデータは, **3.5.2 節**で紹介しているように地点毎に複数のサンプル値が 与えられているものである。このデータそのものを一般市民の方に向けて公開することも検討したが, データの直接的な解釈が難しいということから,何らかの形で加工した画像データのみを公開するこ ととした。この内容については次節(**5.1.2**)で詳細を記す。

一方,実務者を対象としたデータはサンプルデータ全てを公開する方針とした。これは,例えば平 均値を与えることでサンプルデータが本来持つばらつきの情報が落ちてしまい,データが正しい解釈 を持って利用されない可能性を危惧したためである。実際にハザード評価では,モデルの選択,デー タの精度等の様々な要件によって,ばらつきが含まれるものである。このばらつきの程度を把握しな いで利用すると,有意でないような違いを過度に取り上げてしまう可能性が考えられる。

5.1.2 市民へ公開するハザードマップの試作

(1)市民へ公開するハザードマップの試作

人間の意思決定には認知バイアス(正常性バイアス)が伴う。意思決定が実際に合理的な選択に必ずしもならないことを意味していて,特に自然災害時に「自分は大丈夫」といったように都合の良いように過小評価する傾向にある行動心理である。ハザード評価における平均値は,厳密に母集団の統計量であったとしても、50%は高くなるし、50%は低くなるということである。ある地域Aとある地域Bの間で異なる平均値であって,地域Aの方が平均値は高かったとしても,地域Bの方が実際には高い値となる可能性も考えられるのである。しかし,認知バイアスの下では,地域Bの方が安全であるという情報に無意識のうちに解釈されてしまう可能性がある。

この問題を解決するため、ばらつきの程度に応じて表示する空間解像度を変える方法 (Uncertainty Projected Mapping: UPM) が提案されている ³⁾。データにばらつきの大きな箇所では、地点間に有意な差がないと考えて滑らかに表示し、ばらつきの小さな箇所ではデータの平均値を表示しようとするものである。UPM の原論文ではデータの平均値に対して扱うものであったが、問題設定としてはより自由度があり、例えば 75 パーセンタイル等のような図を描くことも可能である。

位置(空間座標) 図-5.1.2 UPM³⁾の基本的な考え方

UPM を用いて **3.5.2 節**で得られた揺れやすさに関するデータサンプルから,指標毎に空間分布を 求めた。**図-5.1.3** に最大加速度 (PGA),最大速度 (PGV),伝達関数の 1-2Hz 平均値 (F12),同 2-4Hz 平均値 (F24)の増幅率を示す。サンプル平均を描いた図に比べて,滑らかに表示される傾向 にある。特に,データ間のばらつきの大きかった最大加速度や最大速度はより滑らかな表示が得られ た。

図-5.1.3 UPM による PGA, PGV, F24, F12 の増幅率の空間表示

(2)配布データについて

本報告書 CD-ROM には、第3章 3.5「揺れやすさマップの構築」で述べた、揺れやすさのデータセットを格納しています。

1)データセットの内容

これまでに観測された 26 種類の地震動から推定される地震動特性値が、下記の 4 ファイルに分けて 保存されています。

ファイル名	データ内容			
PGV 増幅率.csv	地表最大速度の増幅率			
PGA 増幅率.csv	地表最大加速度の増幅率			
1-2Hz 増幅率.csv	伝達関数の1-2Hzの増幅率			
2-4Hz 増幅率.csv	伝達関数の2-4Hzの増幅率			

表-5.2.1 データセットファイルの内容

2)ファイル内容

上記の各ファイルの内容は以下のとおりです。ファイル形式は、ASCIIファイル形式(カンマ区切り)です。

1行目:項目行

2行目以降:データ行〔並び順に, ID, 座標(世界測地系メッシュコード), 緯度,経度,増幅率(26種)〕

表-5.2.2 検討した地震動種類(KiK-net)

観測点名	イベント日時	計測震度値	地震種別
FK0H09	2005/3/20 10:53	4. 51	内陸地殻内
HRSH07	2014/3/14 2:07	4.64	スラブ内
IWTH09	2008/7/24 0:26	4.94	スラブ内
IWTH17	2008/7/24 0:26	4. 53	スラブ内
IWTH23	2003/5/26 18:24	4.99	スラブ内
IWTH23	2008/7/24 0:26	4. 77	スラブ内
IWTH23	2011/4/7 23:32	4. 98	スラブ内
IWTH25	2003/5/26 18:24	4. 83	スラブ内
IWTH25	2008/6/14 9:20	4.94	内陸地殻内
IWTH25	2008/6/14 23:42	4.86	内陸地殻内
NIGH10	2004/10/23 17:56	4. 53	内陸地殻内
SMNH10	2000/10/6 13:30	4. 93	内陸地殻内

観測点名	イベント日時	計測震度値	地震種別		
AKT017	2008/6/14 8:43	4. 54	内陸地殻内		
FKS015	2011/3/11 14:46	4.99	プレート境界		
FKS015	2011/4/11 17:16	4. 53	内陸地殻内		
FKS031	2011/7/31 3:54	4. 62	プレート境界		
IWT008	2011/3/11 14:46	4. 98	プレート境界		
IWT019	2003/5/26 18:24	4. 78	スラブ内		
IWT019	2011/4/7 23:32	4. 82	スラブ内		
IWT019	2012/3/27 20:00	4. 73	内陸地殻内?		
IWT023	2008/7/24 0:26	4. 70	スラブ内		
NAR007	2016/11/19 11:48	4. 52	スラブ内		
SAG001	2005/3/20 10:53	4. 51	内陸地殻内		
SMN015	2000/10/6 13:30	4.86	内陸地殻内		
TCG002	2011/3/11 14:46	4. 57	プレート境界		
YMG014	2001/3/24 15:28	4. 72	スラブ内		

表-5.2.2 検討した地震動種類(K-NET)

3)利用上の注意

- ・当マップによって生じた損害等の一切の責任を負いかねますので、ご了承ください。
- このマップは地盤情報に基づいた平均的な特徴を表したものであり、実現象を表すものではありません。揺れやすい場所は使う尺度によって変わります。詳しい解析条件は委員会報告書を参照してください。
- ・自治体ハザードマップや過去の災害履歴、地盤情報と合わせて判断することが重要です
- ・当情報は、地盤情報に基づいた平均的な特徴を表したものです。実現象を表すものではありません。
- ・当情報のいかなる部分も、いかなる形態およびいかなる手段によっても、公益社団法人地盤工学会
 関西支部および公益社団法人地盤工学会関西支部 関西の地盤情報に基づく防災ハザードマップ開
 発研究委員会への書面による事前の許可なく、複製、転送、転写および Web を含む検索システム
 への格納を行うことはできません。
- ・当情報を利用した研究成果の公表には、下記のような標記で引用を明記してください。
 公益社団法人地盤工学会関西支部 関西の地盤情報に基づく防災ハザードマップ開発研究委員会
 (2019):委員会報告書 CD-ROM のデジタルデータを利用
- ・公益社団法人 地盤工学会関西支部 および公益社団法人地盤工学会関西支部 関西の地盤情報に基づく防災ハザードマップ開発研究委員会は、利用者が当情報を用いて行う一切の行為について、直接・間接損害、特別損害、逸失利益などのいかなる損害を生じた場合においても、利用者に対する賠償責任を負いません。

参考文献

- 1) 内閣府 (2018): 平成 30 年版 防災白書.
- 2) 内閣府 (2018): 統合イノベーション戦略.
- 3) A. Chakraborty and H. Goto (2018): A Bayesian model reflecting uncertainties on map resolutions with application to the study of site response variation, Geophysical Journal International, Vol.214, No.3, pp.2264-2276.

5.2 線状構造物のリスク評価

5.2.1研究の背景

(1)概要

平成7年(1995年)に起こった兵庫県南部地震において,阪神間の鉄道構造物は著しい被害を受けた。 鉄道は線状構造物であるため、1ヶ所でも不通区間が生じると広範囲に影響が及び、同時多発的に不 通区間が生じると大変な混乱が生じる。実際、平成30年6月18日に発生した大阪府北部を震源とす る地震では京阪神の鉄道網が麻痺し、非常に多くの旅客に影響がでている。

本研究では、まず、武庫川から夙川までの区間を例にとり、関西を代表する3つの鉄道である阪急 神戸線、JR 神戸線、阪神電鉄本線の鉄道構造について調査し、各鉄道における構造物の構成に特徴 があることがわかった。特に、一部の鉄道では非常に高い盛土が存在することが明らかになり、高盛 土の地震に対するリスクについて検討するため、実際の鉄道盛土について常時微動を測定した事例を 紹介する。そして、これらの盛土構造物の特性を考慮した上で、南海トラフ巨大地震のような地震発 生時の被災リスクの評価手法について提案する。

(2)武庫川~夙川間における鉄道構造物の比較

阪神地域には図-5.2.1 に示すように阪急神戸線, JR 神戸線, 阪神電鉄本線の3つの鉄道がほぼ並行 して走行している。海側から阪神, JR, 阪急の線路があり, 各路線の鉄道構造物の構成には表-5.2.1.2 に示すような特徴がみられる。

表-5.2.1 鉄道構造物の構成

図-5.2.1 阪神地域の鉄道路線図

阪神電鉄本線は、武庫川から夙川までの区間において、一部で盛土・平面区間が見られるが、その 大部分は高架化が進んでおり、全長約 5.5km の内、約 82%が高架橋区間である。また、阪急神戸線 においては高架橋部分もかなりの範囲で存在するが、平面を走っている区間が比較的多いのが特徴と なっている。阪急神戸線では全長約 4.3km の内、約 42%が高架橋区間で、約 47%が平面区間である。 この様に阪神電鉄本線ならびに阪急神戸線とも盛土区間は限られている。一方で、JR 神戸線につい ては、高架橋部分が無く、全長 4.6km の内、平面区間約 28%と盛土区間約 72%の構成となっている。 図-5.2.1.2 は阪急神戸線ならびに JR 神戸線の平面区間であり、図-5.2.3 は阪急神戸線および阪神電鉄 本線の高架橋区間である。

図-5.2.2 平面区間(左:阪急神戸線,右:JR神戸線)

図-5.2.3 高架橋区間(左:阪急神戸線,右:阪神電鉄本線)

図-5.2.4 JR 神戸線の盛土区間 (左:除草シートのみ,右:除草シートとコンクリート擁壁の併用)

図-5.2.4 は JR 神戸線の盛土区間の状況を示しており、比較的低い盛土から高い盛土まで様々な高さの盛土が存在する。また、法面保護工として除草シートを使用している箇所や、コンクリート擁壁を用いている箇所など様々な区間が見られた。

(3)研究対象の選択

地盤情報 DB を活用し、地震時に特徴的な機能障害が指摘されている線状構造物のリスク評価手法 について検討を行う。特に、関西圏の鉄道路線の内、築造年台が古い土構造物が含まれ、発災後の復 興にも多大な影響を及ぼす鉄道路線を対象として評価を行うこととした。

地盤情報をツールで公開するのみならず,地盤情報 DB を活用した具体的な社会資本の評価を行う ため,その対象物の選定について討議した。その中で,地震被害時には線状構造物,特に鉄道では下 記の問題が浮かび上がった。

- ・線状構造物は、剛構造物(橋梁・高架橋・トンネル等)と、柔構造物(盛土・斜面等)が連続するため、 耐震性の強弱のコントラストが大きい。
- ・特に鉄道の場合は、列車はレール以外の場所を走れないため、部分的な機能障害であっても一定の 線区全体が機能不全に陥る。
- ・特に,鉄道の盛土・土構造物は築造年代の古い箇所が多く,軟弱地盤で橋梁等の構造物が難しかった場所も多い。近年では橋梁部を重点に耐震対策が行われているが,盛土部では豪雨対策に重点が 置かれ,耐震対策までは至っていない箇所が多い。
- ・巨大地震時には東西交通の要衝である関西圏で機能不全が発生すると、西日本と東海・東日本、北 陸方面、紀勢法面への交通遮断につながるなどの影響が大きい。

近年では、モーダルシフトやドライバー不足等により鉄道貨物の輸送量が復活しており、特に遠距 離・大容量に対応できる鉄道貨物輸送は発災後の復興に有効な手段となり得る。東北地方太平洋沖地 震でも、燃料輸送列車による被災地への緊急輸送に重要な役割を担った。この時は、既に貨物輸送が 廃止されて久しかった磐越西線を使用した特例の緊急輸送が行われたことを考えると、近畿地方のロ ーカル線でも同様のことが出来る可能性がある。近年では、熊本地震でも被災地への臨時貨物輸送が 行われている。

以上のことから、今回の研究対象を、関西圏における鉄道の盛土とすることとした。資料調査を行 い、建設過程・年代の把握、構築前の土地利用状況、地盤情報 DB による地盤特性の把握を行い、リ スク区間の抽出を行った。これらの路線では、比較的軟弱な地盤区間において盛土区間がある。現地 踏査を行った結果、構築年代の古い盛土や、耐震性の低い石積擁壁が見られたほか、被害が発生した 際に南北の道路交通にも支障が予想される箇所が見られた。既に、豪雨対策として、鉄筋挿入工・ブ ロック張・シート張・フレーム工などの対策がとられている箇所が多く見られたが、耐震対策には至 っていない箇所が多いようである。

この内,2区間において,委員会全体で常時微動特性の把握を行うことや,地盤情報 DB が充実し ている範囲であること,被災時の社会環境への影響が大きいこと,軟弱地盤区間に古い建設年代の盛 土が存在することなどを検討して研究対象とすることとした。

(4)大阪北部地震発生後の現地踏査結果

大阪北部地震(2018.6.18)発生後, JR 大阪環状線とJR 京都線で現地踏査を実施した。また,後日, JR西日本,阪急電鉄,北大阪急行線等にもヒアリングを行ったが,いずれも地震による盛土の大規 模な被害は殆ど確認されなかった。

1)大阪市内 西九条地区(JR 大阪環状線・桜島線西九条駅西方)

西九条駅周辺の盛土部分や跨道橋について、今回の地震による変状や損傷は認められなかった。 京橋駅西方の桜島線側の盛土法面は、裸地または保護工(ブロック張り・石積擁壁等)となっている が、大きな変状は確認されなかった。

カルバートにも特段の変状はみられない

地下水位が高いと想定される箇所(湧水・沢ガニの確認)があるが,噴砂等の液状化痕跡も確認されていない(6/22 午後:降雨後ではない)。

図-5.2.5 西九条地区 調査位置図(S=1/5000)

図-5.2.6 京橋駅西方の桜島線側の盛土法面 裸地・保護工有り、いずれも、今回の地震による変状は見受けられない

図-5.2.7 カルバート等にも特段の変状はみられない

図-5.2.8 地下水位が高いと想定される箇所 噴砂等の液状化痕跡も確認されていない

2)京橋地区(JR 大阪環状線京橋~桜ノ宮駅間)

盛土法面について,裸地・保護工有り(腰留擁壁・張ブロック等),いずれも今回の地震による変状 は見受けられない。

橋台部のレンガ積についても,目視確認上,今回の地震による歪み等は見受けられない。橋台は煉 瓦積橋台の上に,後年,コンクリートを継ぎ足した形式も見られる。

図-5.2.10 京橋駅~桜見屋駅間 盛土法面 裸地の部分と,腰留擁壁・張ブロック等の保護工が見られる

図-5.2.11 煉瓦積橋台の上に、後年、コンクリートを継ぎ足した形式である 目視確認上,今回の地震による歪み等は見受けられない

図-5.2.12 橋台部に擦りつく擁壁(背面盛土)の石積部 今回の地震による亀裂拡大や変形は見受けられない

3)高槻市梶原地区(JR 京都線)

高槻市梶原周辺の鉄道盛土について確認した。この地域には煉瓦積トンネルが多数存在するが,今回の地震によるものと思われる被害は認められなかった。また,一部で高い盛土も見られたが,変状などの被害は確認できなかった。

図-5.2.13 梶原地区の鉄道盛土分布状況

図-5.2.14 JR 京都線 盛土部 手前の工事は都計道路新設工事

図-5.2.15 JR136 号煉瓦積トンネル(長手積) 地震による顕著な変状認められない

図-5.2.16 JR137 号煉瓦積トンネル(長手積) 地震による顕著な変状認められない

図-5.2.17 JR138 号煉瓦積トンネル(長手積) 地震による顕著な変状認められない

図-5.2.18 JR140 号奥田端アーチ橋 ねじりマンポ形式の煉瓦積トンネル

5.2.2 鉄道盛土の常時微動特性

(1)調査目的

災害リスクを捉えるためには、地盤情報(地盤特性や揺れやすさ)を取り入れた防災ハザードマップの 整備が重要となる。関西圏では地盤情報 DB から地盤情報が活用できることから、宅地・鉄道・道路な どの盛土情報が得られれば、より正確な災害リスクを抽出できると考えられる。そこで、鉄道盛土の表 層地盤の振動特性を利用し、地震時の地盤の揺れやすさを検討・評価するため、常時微動観測を実施し た。

今回は,被災時の社会的影響が大きいことや,軟弱地盤上に立地しているなどの理由から,都市部の 沖積地盤に立地する路線を対象に常時微動観測を実施した。地層構成などの基礎地盤特性や盛土の経年 状態の違いに加え,盛土構造物や法面工として石積擁壁やコンクリート擁壁,張ブロックや鉄筋挿入工 などの対策が施されており,対策工の違いによる盛土の揺れやすさについても,追って検討する。

(2)調査位置

今回の調査位置は、比較的軟弱な地盤に立地する盛土区間の2箇所である。

(3)N 地区計測概要

- 調查日時:H29.11.7 深夜~11.8 未明 AM1 時~4 時 天候:曇~小雨
- 調査態勢:線路內立入計測6名(大島,鍋島,福塚,甲斐,平井,堤)+鉄道職員3名 線路外計測5名(遠藤,河井,豊福,石田,川下) 常時微動計測器×8台(線路内5+線路外3)
- 計測断面:8 断面@50m 間隔 2 断面づつ同時×4 回計測(23 分間) 450m

(4)K地区計測概要

調查日時:H29.11.22 深夜~11.23 未明 AM1 時~4 時 天候:雨

- 調査態勢:線路内立入計測6名(大島,鍋島,福塚,甲斐,平井,堤)+鉄道職員3名 線路外計測5名(遠藤,志賀,永井,鈴木,南部) 常時微動計測器×8台(線路内5+線路外3)
- 計測断面:10 断面@100m 間隔

2 断面づつ同時×5 回計測(13 分間) 900m

図-5.2.25 K地区 調査断面状況図

図-5.2.26 立入教育状況 計測準備状況

図-5.2.27 線路内計測状況

(5)N地区の調査地状況

盛土状況は H=5~9m の盛土となっており、法面は土羽+腰留擁壁や、土羽法面保護工等が成されている。

下図に,調査区間の地盤特性情報について示す。GL-30m 付近まで,N 値が5回以下の軟弱な沖積粘 性土層が厚く分布している。

(6)K地区の調査地状況

盛土状況は H=5~6m の盛土となっており,法面は土羽+腰留擁壁や,土羽法面保護工等が成されている。一部では,沿線建物に近接した直壁部分も見られ,被害時の復旧工事に困難が予想される区間でもある。

下図に,調査区間の地盤特性情報について示す。いずれの区間も,GL-20m付近まで,N値が5回以下の軟弱な沖積粘性土層が厚く分布している。

(7)常時微動特性の整理

鉄道盛土について常時微動特性を、N地区とK地区の2か所の鉄道盛土で計測を行い、その結果について整理した。下図はN地区の鉄道盛土で計測した常時微動観測の結果からH/Vスペクトルについて整理した結果である。No.2-4は盛土上の軌道内で観測した結果であり、No.2-5は盛土肩で観測した結果,No.2-6は鉄道盛土下の地盤上で計測した結果である。

図−5.2.30 N地区の鉄道盛土の常時微動特性

上図から、盛土上では軌道内と盛土肩でほぼ同じH/V スペクトルを示している。0.9Hz 付近に第1ピ ークが見られ、0.2~0.3Hz に第2ピークが現れており、軌道内 No.2-4 と盛土肩 No.2-5 の振動特性の差 は見られない。また、盛土下の地盤上で計測した No.2-6 の結果も盛土上と比べ、ほとんど差が見られな い。N 地区周辺では、他にも盛土高さや天端幅などが異なる8か所の鉄道盛土について同様に常時微動 特性を計測しており、同様の常時微動特性が得られることが確認できた。このことから、盛土部分につ いては、特に盛土高さに関係なく、盛土下の地盤の振動特性とほぼ同じであると考えられる。 次に、K地区の鉄道盛土で計測した常時微動観測の結果を下図に示す。N地区で計測したH/Vスペクトルと同じく、盛土上の軌道内と盛土肩、盛土下の地盤上で計測した結果を示している。N地区では0.9Hz付近に第1ピーク,0.2~0.3Hzに第2ピークが見られたが、K地区では0.2~0.3Hzに第1ピークが見られ,0.9Hz付近のピークは見られない。K地区でも盛土高さや天端幅などが異なる10か所の鉄道盛土で同様の常時微動特性を計測しているが、N地区と同じく盛土上の軌道内と盛土肩、盛土下の地盤上で計測した結果に大きな差は見られなかったため、盛土上下の振動特性はほぼ同じであると考えられる。

以上のことから,沖積地盤上の鉄道盛土については,盛土上で振動特性が増幅する傾向は見られず, 盛土のある地域の地盤振動特性に大きく依存した振動特性を示すことがわかった。

(9)N 地区常時微動計測結果

N地区 No.1 0k100

1-1(軌道中央)H/Vpeak=7.4(Hz)

1-2(盛土法肩)H/Vpeak=5.7(Hz)

1-1(中央)/1-3(下) H/V比較peak=6.8(Hz)

図-5.2.32 常時微動計測結果 (N 地区 No.1)

N地区 No.2 0k150

1.0E-01

N地区 No.3 0k200

N地区 No.4 0k250

N地区 No.5 0k300 5-1 (軌道中央) H/Vpeak=7.4(Hz) 5-3(盛土法肩)H/Vpeak=8.4(Hz) 1.0E+02 1.0E+02 -H/V1 H/V1 H/V2 H/V3 H/V2 +H/V3 H/V H/V 1.0E+01 1.0E+01 Ϋ́ 2 1.0E+00 1.0E+00 4 1.0E-01 1.0E-01 1.0E-01 1.0E+00 1.0E+0 1.0E-01 1.0E+00 1.0E+01 周波数(Hz) 周波数(Hz) 5-3(盛土下)H/Vpeak=1.0(Hz) 1.0E+02 - H/V1 H/V2 H/V3 -H/V

1.0E+01

1.0E+00

1.0E-01

≥ H

N地区 No.6 0k350

1.0E-01

1.0E+00

1.0E+0

N地区 No.7 0k400

1.0E+00

1.0E+00

1.0E+01

周波数(Hz)

1.0E+01

周波数(Hz)

N地区 No.8 0k450

(10)K地区測定結果

K地区 No.1 18k000

1-1(軌道中央)H/Vpeak=2.1(Hz)

1-2(盛土法肩)H/Vpeak=2.1(Hz)

1-1(中央)/1-3(下) H/V比較peak=1.9(Hz)

図-5.2.40 常時微動計測結果(K地区 No.1)

K地区 No.3 18k200

K地区 No.4 18k300 4-4 (軌道中央) H/Vpeak=2.1 (Hz) 4-5(盛土法肩)H/Vpeak=2.1(Hz) 1.0E+02 1.0E+02 - H/V1 H/V1 H/V2 H/V2 H/V3 H/V3 H/V H/V 1.0E+01 1.0E+01 2 1 ₹ < H 1.0E+00 1.0E+00 1.0E-01 1.0E-01 1.0E-01 1.0E+00 1.0E+0 1.0E-01 1.0E+00 1.0E+01 周波数(Hz) 周波数(Hz) 4-6(盛土下)H/Vpeak=1.1(Hz) 1.0E+02 H/V1 H/V2 + - H/V3 H/V 1.0E+01 1.1 २.४ ≥ H M W 1.0E+00 1.0E-01 1.0E-01 1.0E+00 1.0E+0 周波数(Hz) 4-4(中央)/4-6(下) H/V比較peak=4.0(Hz) 4-5(法肩)/4-6(下) H/V比較peak=4.0(Hz) 1.0E+01 1.0E+01 線路方向_上/下 線路方向_上/下 線路直角方向_上/下 線路直角方向 上/下 · 鉛直方向_上/下 4.0 - 鉛直方向_上/下 4.0 MM .An NXX 2 小臣 掛 1.0E+00 1.0E+00 1.0E-01 1.0E-01 1.0E+00 1.0E+0 1.0E+00 1.0E+01 周波数(Hz) 周波数(Hz)

K地区 No.5 18k400

K地区 No.6 18k500

K地区 No.7 18k600

K地区 No.8 18k700 8-4 (軌道中央) H/Vpeak=1.6(Hz) 8-5(盛土法肩)H/Vpeak=1.6(Hz) 1.0E+02 1.0E+02 - H/V1 H/V1 H/V2 H/V3 H/V2 H/V3 H/V H/V 1.0E+01 1.0E+01 1.6 Ϋ́ 2 1.0E+00 1.0E+00 1.0E-01 1.0E-01 1.0E-01 1.0E+00 1.0E+0 1.0E-01 1.0E+00 1.0E+01 周波数(Hz) 周波数(Hz) 8-6(盛土下)H/Vpeak=1.4(Hz) 1.0E+02 H/V1 H/V2 H/V3 H/V 1.0E+01 ≥ 1.0E+00 1.0E-01 1.0E-01 1.0E+00 1.0E+0 周波数(Hz) 8-4(中央)/8-6(下) H/V比較peak=3.4(Hz) 8-5(法肩)/8-6(下) H/V比較peak=3.4(Hz) 1.0E+01 1.0E+01 線路方向_上/下 線路方向_上/下 線路直角方向_上/下 線路直角方向_上/下 .4 · 鉛直方向_上/下 3.4 - 鉛直方向_上/下 樹里 座南 1.0E+00 1.0E+00 1.0E-01 1.0E-01 1.0E+00 1.0E+0 1.0E+00 1.0E+01

周波数(Hz)

周波数(Hz)

K地区 No.9 18k800

図-5.2.48 常時微動計測結果(K地区 No.9)

K地区 No.10 18k900

10-5(盛土法肩)H/Vpeak=1.8(Hz)

図-5.2.49 常時微動計測結果(K地区 No.10)

5.2.3 鉄道構造物のマクロ的な被害予測手法

(1) 概要

鉄道構造物のリスク評価を目的として、地震による盛土のマクロ的な被害予測手法について検討した。 本手法は、盛土の耐震性能と地震外力から、盛土の被害規模をマクロ的に予測する手法である。本手 法を用いることにより、広範なエリアにまたがる鉄道盛土のリスク評価を簡便かつ合理的に実施するこ とができる。また、リスク評価の結果をハザードマップとして視覚化することにより、防災対策資料と して活用することができる。

(2) 被害予測方法

線状構造物の検討対象として、関西圏における鉄道盛土を選定した。選定理由は、地震発生時に一部 区間での崩壊による機能障害が区間全体の機能不全を発生させることや、巨大地震時に関西圏全体の機 能不全が生じ、国内での交通機能障害につながるなどの影響が大きいと考えられるためである。なお、 地震外力として、内陸型直下地震を選定した。

盛土の被害予測方法として類型化モデル解析法
Dを用いた。類型化モデル解析法は、被害予測地域に 存在する対象施設を数種類に類型化し、その各カテゴリーに対応する解析モデルを用いたケーススタデ ィ解析の結果から、各カテゴリーに適用する地震外力と被害規模の関係を求める方法である。

その際,類型化の指標には,盛土の耐震性能に着目し,鉄道盛土の地震危険度マクロ評価法 2)で使用 される危険度評価点(表-5.2.1)を参考に設定した。すなわち、表-5.2.2に示す通り、地盤区分、基礎形 状,盛土構造,盛土高等の盛土諸元から危険度評価点を設定し,盛土高を変化させた4種類のケースス タディ解析モデルを設定した。ケーススタディ解析モデルの危険度評価点の内訳を表-5.2.2 に示す。な お, 文献 2) による盛土高の危険度評価点は区分が粗いため, 図-5.2.50 に示す通り盛土高と危険度評価 点の関係を設定した。

危険度評価点の値は耐震性能が低いほど大きくなり、本設定での最高点は 60 点となる。また、ケー ススタディ解析は地震応答解析(解析コード FLIP³⁾)により実施した。

図-5.2.50 盛土高と危険度評価点の関係

大分類	中分類	重み	配点	最高点	小分類	評価点
地形・地盤に関する情報			3		後背湿地,谷底盛土,旧河道	3
	微地形区分	×1	1	3	三角州海岸低地自然堤防,口一厶台地	1
			Ŷ		唦·砂礫淵砂礫負台地扇状地洞原段上出地	0
			5		軟弱地盤(沖積砂質土質)	15
	地盤区分	×3	3	15	軟弱地盤(沖積粘性土質)	9
			0		普通地盤	0
	甘애자네		5	4.0	傾斜基盤(傾斜地山)	10
	基 盛形状	×2	0	10	水平地山(水平地山)	0
			Σmax	20	®	
盛土に関する情報 I			5	45	片切片盛腹付盛土谷渡り盛土	15
	登工構道(横断)		0	15	それ以外	0
			3	•	切盛境界構造物との境界谷部	9
	塗上 博道(靴町)		e	9	ク ね (1) M く れ (2人)	0
			5		8m以上	15
	盛土高	× 3	3	15	4~8m未満	9
			1		4m未満	3
	什世世生物	×1	3		石積み擁壁3m以上	3
	竹带悟起物		0	3	それ以外(補強済み)	0
	-		Σmax	42	<u>®</u>	
盛土に関する情報Ⅱ	小 川南王	× 1	5		雨水浸透を防ぐのり面工なし(のり面工が機能不全)	5
	009回工		0	0	雨水浸透を防ぐのり面工あり(のり面工が機能維持)	0
	世业识进	× 1	5	5	側溝等の排水設備なし(排水設備が機能不全)	5
	7月17月12日開		0	5	側溝等の排水設備あり(排水設備が機能維持)	0
			Σmax	10	0	
維持管理に関する情報	四上体記,《史屋田	~ 1	5	10	降雨時の弱点箇所に指定災害履歴あり	10
	羽息固则,灭古腹症	^2	0	10	降雨時の弱点箇所に指定されていない災害履歴なし	0
			5		顕著な変状等が認められ盛土の安定性が低下している	5
	変状	×1	3	5	軽微な変状等が認められ経過観察中である	3
			0		顕著な変状等がなく盛土の安定性が維持されている	0
)洒 -k	× 1	5	-	のり面・のり尻から湧水あり(湿潤状態にある)	5
			0	5	のり面・のり尻から湧水なし	0
			Σmax	20	0	
	危険度評価点		Σmax	100	&+++++++++++++++++++++++++++++++++++++	

表-5.2.1 鉄道盛土地震危険度マクロ評価法の危険度評価点2)

: ケーススタディ解析モデルの危険度評価に用いる着目点と配点

1	鉄道盛土マ	クロ評価法の分類と危険度評価点			解析	Eデル	
大分類	中分類	小分類	危険度 評価点	盛土高 h=2m	盛土高 h=4m	盛土高 h=6m	盛土高 h=8m
		軟弱地盤(沖積砂質土層)	15	15	15	15	15
	地盤区分	軟弱地盤(沖積粘性土層)	9	-	_	-	-
地形・地盤に 関する情報		普通地盤	0	-	-	-	-
	甘林取业	傾斜基盤	10	-	-	-	_
	型证101入	水平基盤	0	0	0	0	(
	盛土構造	片切片盛、腹付盛土、谷渡り盛土	15	-	-	_	_
	(横断)	それ以外	0	0	0	0	C
盛土に関する 情報 I		8m以上		-	-	—	15
	盛土高	4~8m未満	盛土高で 変化	-	9	12	_
		4m未満		6	-	-	-
盛土に関する		雨水浸透を防ぐのり面工なし	5	5	5	5	Ę
情報Ⅱ		雨水浸透を防ぐのり面工あり	0	-	-	_	-
	危険	度評価点 合計	60	26	29	32	35
盛土に関する 情報 I 盛土に関する 情報 I	(横断) 盛土高 のり面工 危険)	それ以外 8m以上 4~8m未満 4m未満 雨水浸透を防ぐのり面工なし 雨水浸透を防ぐのり面工あり 変評価点 合計	0 盛土高で 変化 5 0 60	0 	0 	0 	

表-5.2.2 ケーススタディ解析モデルの危険度評価点

(3) 解析条件

ケーススタディ解析条件を表-5.2.3 に示す。解析モデルは盛土高 2m から 8mまで4種類のモデルを 設定した。基礎地盤モデルは沖積平野部を想定し,関西圏地盤情報ネットワークの地盤情報データベー ス 4を参考に図-5.2.51 および表-5.2.4 の通りに設定した。盛土材料の地盤定数は鉄道構造物等設計標 準・同解説・土構造物 5を参考にして設定した。解析モデル図 (メッシュ分割)の一例 (h=8m)を図-5.2.52 に示す。また,解析パラメータは表-5.2.5 に示す通り,基礎地盤モデルの各土層の地盤工学特性に相応 する値に設定した。

設定した基礎地盤モデルでは、沖積砂質土層(As)の下位に沖積粘性土層(Ac)が分布しており、マクロ評価法²⁾の分類では、軟弱地盤(沖積砂質土層)と軟弱地盤(沖積粘性土層)のいずれにも該当する地盤と考えられるが、As 層で液状化の発生が懸念される地盤でもあり、マクロ評価法の分類での軟弱地盤(沖積砂質土層)に該当すると考えた。

地震外力は、図-5.2.53 に示す当該地盤の直下型地震および海溝型地震の2 通りの加速度波形を用いて、表-5.2.3 の通り最大加速度の振幅を4 ケースに調整して、工学的基盤面に入力した。

表-5.2.3 ケーススタディの解析条件

	項目	内容
	盛土高	4ケース (2m、4m、6m、8m)
成十	天端幅	ケース (10m)
一一一	法勾配	1ケース (1:1.5)
	盛土材料	1ケース (γ =16kN/m ³ 、c=6kN/m ² 、 ϕ =35度)
基礎地	也盤モデル	1ケース(軟弱地盤:沖積平野)
工学的	的基盤面	洪積粘性土層(Dc)の下面
እ ታነዛ	「雪動	直下型地震波形(基盤波) 4ケース(最大加速度を400、600、800、1000galに調整)
////	G /12€ ≠41	海溝型地震波形(基盤波) 4ケース(最大加速度を150、200、250、300galに調整)

O.P.+0.14m		盛土			
		$\gamma = 18.0 \text{ kN/m}^3$	N=10.1		
地下水位 O.P1	I.93m As	$\gamma = 18.0 \text{ kN/m}^3$	N=10.1		Vs = 153 m/s
O.P8.86m	Ac1	γ =15.7 kN/m ³	N=2.6	c=-3.0z+25	kN/m^2 Vs=164m/s
O.P18.86m	Ac2	γ=16.0 kN/m ³	N=5.8	c=-3.0z+25	kN/m^2 Vs=205m/s
O.P28.56m	Ds	γ=18.6 kN/m ³	N=42.0	i.	Vs=264m/s
O.P30.56m	Dg	$\gamma=21.6 \text{ kN/m}^3$	N=50.0		$V_s = 352 \text{m/s}$
O.P32.56m	Dc	γ =15.7 kN/m ³	N=11.3	c=190 kN	m^2 Vs=255m/s
O.P43.66m	工学的基盤面	*	《粘着力 c	の式中のz:	標高(O.P.)

図-5.2.51 基礎地盤モデル

上屋	上端標高	平均	単位体積重量	粘着力	弾性波速度
工虐	~下端標高	N 値	$\gamma~({ m kN/m^3})$	$c (kN/m^2)$	Vs (m/s)
沖積砂質土	O.P.+0.14m	10.1	10.0		150
As	~O.P8.86m	10.1	18.0		193
沖積粘性土	O.P8.86m	9.0	15 7	-3.0 z +25	104
Ac1	~O.P18.86m	2.0	10.7	(z:OP 標高)	164
沖積粘性土	O.P18.86m	59	16.0	-3.0 z +25	205
Ac2	~O.P28.56m	0.0	10.0	(z:OP 標高)	205
洪積砂質土	O.P28.56m	42.0	186		264
Ds	~O.P30.56m	42.0	10.0		204
洪積礫質土	O.P30.56m	50.0	21.6		259
Dg	~O.P32.56m	(135)	21.0		552
洪積粘性土	O.P32.56m	11.9	15 7	100	955
Dc	~O.P43.66m	11.0	10.7	190	200

表-5.2.4 各土層の地盤工学特性

※地下水位: O.P.-1.93m

※細粒分含有率:Fc=12.0% (As 層)

土層	湿潤単位 体積重量 yt (kN/m ³)	飽和単位 体積重量 γ sat (kN/m ³)	基準有効 拘束圧 σma (kN/m ²)	基準せん 断 弾性係数 Gma (kN/m ²)	基準体積 弾性係数 Kma (kN/m ²)	ポアン 比 v	ン	せん断 抵抗角 (度)	粘着 c (kN/n	力 i ²)	最大減衰 hmax	間隙率 n	拘束圧 依存性 mg, mk
盛土	18.00	18.00	98.0	64,044	167, 017	(. 33	35.	0	6.0	0.24	0.45	0.5
As(水位上)	18.00	18.00	98.0	114, 014	297, 331	(. 33	40.	6	0.0	0.24	0.45	0.5
As	18.00	18.00	98.0	61,049	159, 205	(. 33	40	0	0.0	0.24	0.45	0.5
Ac1	15.70	15.70	90.9	43, 088	112, 368	(. 33	0.	0 6	66.6	0.20	0.55	0.5
Ac2	16.00	16.00	134. 1	68, 612	178, 930	(. 33	0.	0 9	96.1	0.20	0.55	0.5
Ds	18.60	18.60	98.0	102, 897	268, 338	(. 33	42	3	0.0	0.24	0.45	0.5
Dg	21.60	21.60	98.0	203, 165	529, 823	(. 33	42	8	0.0	0.24	0.45	0.5
Dc	15.70	15.70	210.0	104, 173	271, 666	(. 33	0.	0 19	90.0	0.20	0.55	0.5
	细粒八			液状化	化パラメータ	,							
土層	和拉分 含有率 Fc (%)	φp	s 1	w 1	p1		р	2	c1				
As	12.0	28.	0 0.0	05 12	2.57	0.50		0.903	1.30				

表-5.2.5 解析パラメータ

(4)ケーススタディ解析結果

ケーススタディ解析結果の一例として,直下型地震(最大加速度 800gal)による盛土高 h=6mモデル (危険度評価点 35)の残留変形図と最大過剰間隙水圧比分布図を図-5.2.54 および図-5.2.55 に示す。沖 積砂質土層(As)では 1.0 に近い過剰間隙水圧比が見られ,液状化の発生が確認できる。なお,図-5.2.54 の変形図は地震後の排水変形は含まれていない。

ケーススタディ解析結果より得られた盛土の危険度評価点と盛土天端沈下量の関係を図-5.2.56 に示 す。盛土天端沈下量は、危険度評価点が大きいほど大きくなり、入力地震動の最大加速度が大きいほど 大きくなる。図中の赤破線は盛土天端沈下量 0.2m と 0.5mのラインである。表-5.2.6 に示す盛土被害規 模と沈下量の関係 ⁶⁾を参考に、盛土天端沈下量 0.2m と 0.5mは盛土の被害規模の大(被害ランクIII:復 旧に長時間を要す)、中(被害ランクII:応急処置で復旧が可能)、小(被害ランクII:軽微な被害)の 境界値と考える。

図-5.2.54 残留変形図(直下型地震:盛土高 h=6m:最大加速度 800gal)

図-5.2.55 最大過剰間隙水圧比分布図(直下型地震:盛土高 h=6m:最大加速度 800gal)

変形レベル	被害程度	沈下量の目安
1	無被害、軽微な被害	無被害
2	無被害、軽微な被害	沈下量20cm未満
3	応急処置で復旧可能な被害	沈下量20cm以上~50cm未満
4	復旧に長時間を要する被害	沈下量50cm以上

表-5.2.6 盛土の被害程度と沈下量の目安⁷⁾

a) 直下型地震

(5) 被害判定マトリクス

ケーススタディ解析結果に基づき,鉄道盛土の地震によるマクロ的な被害予測手法について考察する。 本予測手法では、図-5.2.57に示す通り、盛土情報(耐震性能の指標となる危険度評価点)と、地震情報 (工学的基盤面の最大加速度)および地盤情報を用いて、盛土の被害規模を予測する。また、盛土の被 害規模は盛土天端の沈下量から評価する。

図-5.2.58 は、盛土の危険度評価点と盛土天端沈下量の関係(図-5.2.56)から整理した、盛土情報(危険度評価点)と地震情報(最大加速度)から盛土の被害規模を判定するマトリクスである。本マトリク

スを用いることにより,路線上の各盛土の危険度評価点と,同位置で想定される地震動(工学的基盤) の最大値がわかれば,盛土の被害ランクが判定できる。なお,本マトリクスは図-5.2.51に示す基礎地盤 モデル(沖積平野)を用いた検討対象地区での一例である。

図-5.2.57 盛土のマクロ的な被害予測手法のアウトライン

地震動					危険度	評価点				
基盤面(最大値)	26	27	28	29	30	31	32	33	34	35
400gal										
600gal										
800gal										
1000gal										

a)直下型地震

地震動					危険度	評価点				
基盤面(最大値)	26	27	28	29	30	31	32	33	34	35
150gal										
200gal										
250gal										
300gal										

b)海溝型地震

(凡例)
 被害ランクI
 被害ランクI
 応急処置で復旧可能な被害
 被害ランクII
 復旧に長時間を要する被害

図-5.2.58 盛土の被害判定マトリクス(検討対象地区での一例)

5.2.4 鉄道盛土ハザードマップへの展開

(1) 概要

前節では鉄道盛土のリスク評価を目的とした,地震によるマクロ的な被害予測手法について検討した。 本節では、マクロ的な被害予測手法の結果を用いて、鉄道盛土ハザードマップへの展開について検討す る。本検討では、広範なエリアにまたがる鉄道盛土のリスク評価結果をハザードマップとして視覚化す る。本ハザードマップは施設管理者の防災対策に活用いただく資料と考える。

(2) 鉄道盛土ハザードマップ

盛土の被害判定マトリクス(図-5.2.58)に基づき,検討対象路線上に位置する複数の盛土の被害予測 を実施し,盛土のマクロ的リスク評価を実施した。路線上に位置する各盛土の耐震性能(危険度評価点) は,盛土高やのり面工等の盛土諸元に基づき算定した。また,地震情報(最大加速度)は,各盛土位置 で予測された2通りの地震動(直下型,海溝型)を対象として,工学的基盤面におけるNS成分とEW 成分のうち大きい方を用いた。これらの盛土情報と地震情報から,被害判定マトリクス(図-5.2.58)に 基づき被害ランクを判定し,リスク評価を実施した。

リスク評価の結果として得られた被害ランクを可視化できるように、盛土ハザードマップを作成した。 本マップは線状構造物の施設情報を一覧できるよう縦断図仕立てのマップとした。リスク評価作業用の 盛土ハザードマップを図・5.2.59 に示す。作業用マップには被害判定に必要な情報以外に、地形区分、液 状化危険度(液状化ゾーニングマニュアル(旧国土庁)に基づく指標)等の情報を加えた。また、作業 用の鉄道盛土ハザードマップから作業時のみ必要な情報を省き、路線管理者が防災対策資料として活用 できる盛土ハザードマップ(完成版)を図・5.2.60 に示す。図・5.2.60 のハザードマップより、対象路線 上の盛土は直下型地震で被害ランクⅡ~Ⅲの被害が予測され、海溝型地震で被害ランクⅢの被害が予測 されることがわかる。

提案する盛土ハザードマップでは、空中写真や盛土高縦断図等が記載されており、路線上に位置する 各盛土の被害規模を容易に把握することができ、合理的かつ効果的な防災対策の資料として活用するこ とが可能である。

(3) 課題

鉄道盛土のリスク評価およびハザードマップ(縦断マップ)の検討を通して考えられる課題は以下の 通りである。

- ・今回の検討では盛土高の変化に着目したマクロ的被害予測手法となったが、その他の耐震性能の要素 を取り入れたケーススタディ解析を実施することで、より実用的な被害予測が可能になるものと考え られる。また、盛土の耐震性能を表現する危険度評価点については、各要素の配点などを詳細に検討 することも考えられる。
- ・さらに、今後の運用として、高架区間、ボックス区間、橋梁区間などの各構造物の危険度と一体的に 評価することで、縦断ハザードマップの防災対策資料としての有用度が高まるものと考えられる。

キョリ標	300 400	500 600	0 700	800	006	0 1(00 200	300	400	500 6(00 700	800	006	0 1(00 200	300	400	500 6(00 700	800	006	0 10(200	300 40	0 500 60	00 700	800 900	0
地点	A													8				-			_							0
◇盛土情報																												
左_盛土高:max (m)		0.5	5.9																	6.9 5	.6 4.	5.		ú	9	3.6		
右_盛土高:max (m)		7.	9 1.	-																4.9 5	.7 0.	6.	2	4	4	5.0	_	
◇地盤情報																												
地盤情報08番号	5031 mm 741 723	5031 714	7	12		5030		50:	1	71	30		5030		2739	73	6	73	6		741		2739 742		2739 831	2	739	273
地形区分(土地条件図)														御	土地·北	里立地												
液状化の可能性														*	Ed) C 3	がた												
のり両工の有無		-	賺			-							-							業	業	ŧ		*	- HE	賺		
◇地震情報																												
直下型地震	5031 mm 74 72	S	12031				5030				S	030					2739 73					2739 74		-		2739 83		273 82
最大加速度(gal)	696 8	798 (EW	() , 769	(SN)		9) 609	W), 91	8(NS)		9	64(EW	, 597	(SN)		-	145 (EV	V), 536	(SN) 5			890 (E	W), 560	(SN)		702 (EM	/)、612 (h	(S)	83
海溝型地震							u,	235032	12														513573	11				
最大加速度(gal)							295 (E	W). 23	(SN) 50													225	(EW).	(NS)				
◇地震時危険度マクロ評価(点)																												
地形・地盤に関する情報																												
地盤区分			15						-											15 1	15 15	T	10		5	15		
基礎形状			0										_							0	0	0	Arreste			0		
盛土に関する情報Ⅰ																												
盛土構造(橫断)			0			_				_	_									0	0	0				0	_	
廢土商	_		6				_						_		_			_		12 1	1 11	1		-	-	6		
盛土に関する情報Ⅱ					1																							
危険度評価点			s				_						_	_	_		_	_		s	S	S		u 1		S	_	
令被害規模(直下型地震)																												
最大加速度 (gal)			798																	390 8	168 06	68 (0	70	2	702		
危険度評価点	_		29															_		32 3	1 32	33		m	-	29		
被害ランク			Ħ								_				_					I II	H	E	-	Η		п		
◇被害規模(海溝型地震)																												3
最大加速度(gal)			295			-				_				-					10.0	229 2.	22 22:	1 22	6	22	6	229		
危険度評価点			29												_			_		32 3	1 32	31		e	1	29	_	
被害ランク			Ħ																	I I	H	E	1017	H	_	Ħ		

図-5.2.59 盛土ハザードマップ(作業用)

	and the states													See.					1000	-		0.85	10.5		-2	F				1920	10 C C C C		3		
イヨン様	300 400 500	600	200	800	0006	H	00 20	30 30	00 40	0 50	0 600	200	800	006	0	100	200	800 4	00 5	900	00	00 8	00	0	9	00 20	0 30(0 400	200	600	700	800	0	10	-
地点	A							-		-						-				-			-	_	-								_	о	-
袋中冯真																																			
左側面 縱断図 右側面	300 1400 1500 300 1400 1500	1600	700	800	0 006	1 H	00 12(00 12(00 130	00 140 00 140	0 150	0 1600	1700	1800	1900 1900	0 0	100 1	200 12	300 14 100 14	00 15	00 16	00 17		8 8		10	0 20	0 1300	0 1400	1500	1 009 I	81 00 <u>/</u> 81 00/	00 190 00 190	<u> </u>	1100	
◇盛土情報																							5										8		
左_盛士高:max(m)		0.5	5.9		-		-	-	-	-	_	_						-	-	-	-	6.	9 5.6	4.4	_	5.0	-	S	9		3.6	-	-	-	-
右_盛士高:max(m)		7.9	1.1															-	-			4.	9 5.0	2.5		6.2		4	4		5.0		-		
◇地盤情報																																			
地形区分(土地条件図)																盛土1	也・埋ユ	力地																	
液状化の可能性																権的	て大き	12																	
◇被害規模(直下型地震)																																			
最大加速度 (gal)		-	86,		-																	89(890	890	-	890		7(02		702				-
被害ランク			E																			E	E	E		Ħ		-	-		н		-		-
◇被害規模(海溝型地震)					3						15																					-		-	
最大加速度(gal)		2	395																		-	229	9 229	9 229		229		2.	6		229			_	-
被害ランク			H					-														H	H	Ħ		H	-	-			Ħ			_	
 (凡例) (及例) 被害 カソク I 被害 ウソク I 	無被害、軽 応急処置で後II 復旧に長時間 る	後なた、単一世代の	被害なななのない。	199 日子																															ŕ

5.2 参考文献

- 1) 林健二: 地震による地盤災害のマクロ的被害予測手法についての一考察, 第41回地盤工学研究発表 会, pp.2003-2004, 2006
- 山田孝弘・土井達也・近藤政弘・常田賢一:鉄道盛土の地震危険度マクロ評価法の提案と適用性の 検証, Kansai Geo-Symposium 2014-地下水盤環境・防災計測技術に関するシンポジウム-, 2014
- 3) Iai, S., Matsunaga, Y., and Kameoka, T. : Strain Space Plasticity Model for Cyclic Mobility, SOILS AND FOUNDATIONS, Vol.32, No.2, pp.1-15, 1992
- 4) 関西圏地盤情報ネットワーク: 関西圏地盤情報ライブラリー, http://www.geo-library.jp/
- 5) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説-土構造物, 2013
- 6) 鉄道総合技術研究所:鉄道構造物等設計標準·同解説-耐震設計, 1999

5.3 地盤情報 DB と被害マップを利用した盛土地の被害相関分析

5.3.1 研究概要

西宮市では、1995年の兵庫県南部地震の被害を契機とし、宅地盛土の耐震化事業を進めている。同様の施策は他自治体でも取り組みが見られるが、この際、特に丘陵地帯での宅地被害と地盤条件の相関を把握することで、施策の推進の一助となるのではないかと考えた。

兵庫県南部地震時,西宮市では消防による初期鎮圧に成功しており,火災による死傷者は少なく,大 多数は火災以外の倒壊による被害である。

本研究では西宮市域において西宮市都市局と共同で,兵庫県南部地震時の建物被害状況および人的被 害を再整理し,地盤情報 DB を活用して宅地基礎地盤特性との関係について分析を行い,盛土の耐震対 策による被害の軽減の有効性について提言を行うことを目指した。

H29年度より研究を開始し、人的被害のあった箇所(西宮市消防局へのヒアリング)と、盛土範囲(盛土 抽出調査結果)の特定を行った。H30年度には、地盤特性(地盤情報 DBより)の整理、GISデータの構築 を行って相関性を分析した。兵庫県南部地震時の建物被害状況については、調査時のデータの出所や現 在の所在の確認を進め、(独法)建築研究所に所在することが判明し、当時の共同研究者である日本建築 学会近畿支部および日本都市計画学会近畿支部への提供承諾依頼を行い、承諾を得ている。

5.3.2 兵庫県南部地震時の西宮市の被害

(1)全体の被害状況と火災による被害の内訳

兵庫県南部地震では,西宮市全体で死者 1,146人,負傷者 6,386人,全壊 24,645棟,半壊 17,202棟の被害が発生した。このうち,火災については西宮市では消防機関による初期鎮圧に成功しており,火災による直接の死傷者は 15人,焼損棟数は 90棟にとどまっている。

このことより、大多数の被害(人的・建物)は火災以外の原因、すなわち建物の倒壊等による被害であることがわかる。

死者	1, 146	人	
負傷者	6, 386	人	
全壊	34, 136	世帯	24,645 棟
半壊	27, 102	世帯	17,202 棟

表-5.3.1 兵庫県南部地震の西宮市全体の被害状況

	1/17	1/18	1/19	合計		
発生件数	34	4	3	41 件		
(うち再燃火災)	(4)	(2)		(6) 件		
(うち車両火災)	(3)			(3) 件		
焼損棟数	83	4	3	90 棟		
焼損面積	6, 851		798	7,649 平米		
罹災世帯	124	2	28	154 世帯		
罹災人員	274	2	45	321 人		
死者	13			13 人		
負傷者	2			2 人		

表-5.3.2 上記の内, 火災による被害状況

出典:阪神・淡路大震災西宮市消防の活動記録(西宮市消防局) ほか

(2)盛土造成地での人的被害状況の整理

町丁目別死亡者数有無一覧(西宮市提供データ)より,大規模盛土造成地を含む町丁目のうち,火災に よる死亡者以外で死亡者ありとなっている町丁目を GIS により図化した。大規模盛土造成地指定箇所を 含む町丁目で,死亡者数ありの町丁目は下表の19町丁目となっている。死亡者以外の人的被害(重軽傷 者)については,現段階では追跡が出来なかった。

本研究では、以後、死亡者について「人的被害」と呼称して表示する。

表-5.3.3 大規模盛土造成地指定箇所を含む町丁目で人的被害(死亡者)数あり町丁目

震災時	該当する	死亡者	死亡者数	町名
町丁目	盛土造成地番号	有無	町丁目全体	CODE
愛宕山	南202	有	不明	6620871
上ケ原四番町	南202	有	2	6620894
上ケ原五番町	南200	有	8	6620895
上ケ原七番町	南200	有	不明	6620881
上ケ原九番町	南216	有	1	6620883
老松町	南49-2	有	1	6620085
大谷町	南112	有	3	6620054
霞町	南111	有	3	6620052
神垣町	南186-2	有	3	6620865
雲井町	南111	有	1	6620064
甲陽園本庄町	南180	有	1	6620015
桜谷町	南186-3	有	5	6620032
桜町	南93	有	1	6620071
高座町	南200	有	3	6620872
殿山町	南104	有	2	6620065
仁川町6丁目	南213	有	20	6620811
豊楽町	南93	有	3	6620072
松風町	南90	有	3	6620073
松園町	南111	有	1	6620053

NO	連番	盛土造成地 番号	町名 CODE	震災時 町丁目	震災時 地番	H29現在 町丁目	H29 地番	H29 備考	死亡者 有無	死亡者数 町丁目全体
148	1	南180	6620015	甲陽園本庄町	4	甲陽園本庄町	4		有	1
149	2	南180	6620015	甲陽園本庄町	5	甲陽園本庄町	5		有	1
150	3	南180	6620015	甲陽園本庄町	6	甲陽園本庄町	6		有	1
164	4	南186-3	6620032	桜谷町	11	桜谷町	11		有	5
118	5	南111	6620052	霞町	4	霞町	4		有	3
126	6	南115	6620052	霞町	3	霞町	3		有	3
117	7	南111	6620053	松園町	13	松園町	13		有	1
119	8	<u>南112</u>	6620053	松園町	5	松園町	5		有	1
120	9	南112	6620053	松園町	10	松園町	10		有	1
121	10	南112	6620053	松園町	15	松園町	15		有	1
12/	11	南115	6620053	松園町	1	松園町	1		有	1
122	12	南112	6620054	大谷町	3	大谷町	3		有	3
123	13	<u> 南日2</u>	6620054		8	大谷町	8		有	3
124	14	<u> </u>	6620054	大谷町	9	大谷町	9		有	3
125	15	<u> </u>	6620054	大谷町	10		10		<u>月</u>	3
249	10	<u> </u>	0020054	大谷町	4	大谷町	4		有	<u>ა</u>
200	1/	円Z18 吉010	00200054	人公可	5	人公可	5		有	<u>ა</u>
201	10 10	2 0 あつ10	6620054	入台町	6	入台 <u>可</u> 十公町	0 7		有	<u>う</u>
202	19	2 ð 	6620054	入台町	11	入台 <u>町</u> 十公町	11		有	<u>う</u>
203 116	20	<u> </u> 210 11	6620064	<u>入台門</u> 電井町		<u>入台町</u> 電井町	1		有	<u>১</u>
00	21	<u> </u> 	6620065	<u>芸井町</u> 駅山町	1 ງ	<u>芸井町</u> 駅山町	1 2		有	1 2
39	22	<u>用104</u> 齿10/	6620065	殿山町	2		2 2		日	<u> </u>
100	23	<u> </u>	6620065	殿山町	ა ნ	殿山町	3 5		有方	2
101	24	<u> </u>	6620065	殿山町	5	殿山町	5		<u></u> 有	<u> </u>
102	26	南106-1	6620065	殿山町	2	殿山町	/ 8		有	2
103	20	南106-1	6620065	殿山町	0	殿山町	0		<u></u> 有	2
104	28	南106-1	6620065	殿山町	10	殿山町	10		有	2
106	20	南106-2	6620065	殿山町	6	殿山町	6		有	2
100	30	南106-2	6620065	殿山町	7	殿山町	7		有	2
107	31	南106-2	6620065	殿山町	8	殿山町	8		有	2
89	32	南93	6620071	桜町	1	桜町	1		右	1
90	33	南93	6620071	桜町	4	桜町	4		右	1
85	34	南93	6620072	豊楽町	3	豊楽町	3		有	3
86	35	南93	6620072	豊楽町	7	豊楽町	7		有	3
87	36	南93	6620072	豊楽町	8	豊楽町	8		有	3
88	37	南93	6620072	豊楽町	14	豊楽町	14		有	3
81	38	南90	6620073	松風町	10	松風町	10		有	3
82	39	南90	6620073	松風町	11	松風町	11		有	3
83	40	南90	6620073	松風町	12	松風町	12		有	3
84	41	南90	6620073	松風町	16	松風町	16		有	3
68	42	南49-2	6620085	老松町	10	老松町	10		有	1
69	43	南49-2	6620085	老松町	16	老松町	16		有	1
70	44	南49-2	6620085	老松町	17	老松町	17		有	1
71	45	南50-1	6620085	老松町	9	老松町	9		有	1
72	46	南50-1	6620085	老松町	9	老松町	19	増番地	有	1
235	47	南213	6620811		10		10		有	20
236	48	<u>南213</u>	6620811		11		11		<u>有</u>	20
237	49	<u> 第213</u>	6620811	1_川町6丁目	12	1_川町6丁目	12		月	20
238	50	用213 ま102 0	6620811	<u>1_川町6丁目</u>	13	<u>1_川町6丁目</u>	13		月	20
15/	51	<u>用180-2</u>	0020865	<u>伊理町</u> 地長町	9	神理町	10		月	3
108	52	100-2 ★106-2	0020805	作坦可	10	伊坦可	10		月	<u>ა</u>
105	53 54	肖 810-3	6620071	<u>伊坦可</u> 英古山	4	<u>伊坦可</u> 英古山	4		月	<u></u> য
203	54 55	<u> 202</u>	6600071	<u> 変石山</u> 	10	<u> 変石山</u> 	10		有	1 小明
204	50	<u>用202</u> 	6620071	<u> 変石山</u> 	10	<u>変石山</u> 悉空山	10		11	<u> </u>
200	50	l⊞202 古202	6620071	<u>乏有円</u> 悉空山	1Z	乏 <u>有</u> 田 悉宁山	12		日	<u> </u>
200	57	用∠0∠ 卤202	6620071	<u>乏有円</u> 悉空山	10	乏 <u>有</u> 田 悉空山	10		行	<u> </u>
207	50	用∠0∠	6620071	<u>乏有円</u> 悉空山	20	<u>乏石田</u> 悉宁山	20		行	<u> </u>
254	60	南220	6620871	<u>冬白山</u> 悉空山	4 5	<u>冬白田</u> 悉空山	4 5		·日 右	<u> </u>
256	61	南220	6620871	愛宕山	13	<u>冬日日</u> 愛宕山	13		有	不明
200			0020011	× 1 H	10	<u>х</u> цн	10			

表-5.3.4(1) 大規模盛土造成地指定箇所を含む町丁目で人的被害数あり町丁目内訳(1)

NO	連番	盛土造成地 番号	町名 CODE	震災時 町丁目	震災時 地番	H29現在 町丁目	H29 地番	H29 備考	死亡者 有無	死亡者数 町丁目全体
257	62	南220	6620871	愛宕山	14	愛宕山	14		有	不明
258	63	南220	6620871	愛宕山	15	愛宕山	15		有	不明
259	64	南220	6620871	愛宕山	18	愛宕山	18		有	不明
265	65	南222	6620871	愛宕山	2	愛宕山	2		有	不明
266	66	南222	6620871	愛宕山	3	愛宕山	3		有	不明
192	67	南200	6620872	高座町	12	高座町	12		有	3
193	68	南200	6620872	高座町	13	高座町	13		有	3
194	69	南200	6620872	高座町	14	高座町	14		有	3
248	70	南216	6620872	高座町	15	高座町	15		有	3
260	71	南222	6620872	高座町	4	高座町	4		有	3
261	72	南222	6620872	高座町	5	高座町	5		有	3
262	73	南222	6620872	高座町	6	高座町	6		有	3
263	74	南222	6620872	高座町	7	高座町	7		有	3
264	75	南222	6620872	高座町	8	高座町	8		有	3
186	76	南200	6620881	上ケ原七番町	1	上ケ原七番町	1		有	不明
187	77	南200	6620881	上ケ原七番町	2	上ケ原七番町	2		有	不明
188	78	南200	6620881	<u>上ケ原七番町</u>	3	<u>上ケ原七番町</u>	3		有	不明
240	79	南216	6620883	<u>上ケ原九番町</u>	1	<u> 上ケ原九番町</u>	1		有	1
241	80	南216	6620883	<u>上ケ原九番町</u>	2	<u>上ケ原九番町</u>	2		有	1
242	81	南216	6620883	<u>上ケ原九番町</u>	3	<u>上ケ原九番町</u>	3		有	1
195	82	南202	6620894	<u>上ケ原四番町</u>	1	<u>上ケ原四番町</u>	1		有	2
196	83	南202	6620894	<u> 上ケ原四番町</u>	2	<u> 上ケ原四番町</u>	2		有	2
197	84	南202	6620894	<u> 上ケ原四番町</u>	3	<u> 上ケ原四番町</u>	3		有	2
198	85	南202	6620894	<u>上ケ原四番町</u>	4	<u> 上ケ原四番町</u>	4		有	2
185	86	南200	6620895	上ケ原五番町	1	上ケ原五番町	1		有	8

表-5.3.4(2) 大規模盛土造成地指定箇所を含む町丁目で人的被害数あり町丁目内訳(2)

5.3.3 西宮市域の大規模盛土造成地

(1)大規模盛土造成地公開状況

西宮市では大規模盛土造成地 103 箇所について、市の WEB サイトで公開されている。

図-5.3.2 西宮市の大規模盛土造成地マップ公開状況(西宮市 WEB サイト)

(2)大規模盛土造成地抽出方法

大規模盛土造成地マップとして公開されている盛土の形態は、下記の2種類にわけられるが、西宮市 では大半が①の「谷埋め型」となっている。

①谷埋め型大規模盛土造成地:谷を埋め立てた造成宅地で,盛土面積が3千m²以上のもの。

②腹付け型大規模盛土造成地:傾斜地に盛土した造成宅地で,盛土前の地山傾斜が 20 度以上で,かつ盛土高が 5m 以上のもの。

指定の際には、「大規模盛土造成地の変動予測調査ガイドラインの解説(国土交通省,H20.2)」を参考にして、新旧の差分 DEM をもとに大規模盛土造成地が抽出されている。

これらの手順で机上抽出を行った後,現地調査を実施するなどして,大規模盛土造成地が103箇所抽 出されている。

図−5.3.3 大規模盛土造成地の抽出イメージ

(3)指定箇所以外の盛土分布状況

阪神間では、六甲山麓に広がる扇状地で構成される丘陵地が広がっており、この扇状地を下刻する小 規模な谷地形を埋めた谷埋め盛り土が多く存在する。前述の「大規模盛土造成地」抽出基準以外にも、 例えば、盛土面積3千m²以下の谷埋め盛土、盛土高5m以下の腹付け盛土などの小規模盛土が多く分布 していると想定される。

前述の DEM による盛土範囲抽出の机上調査結果時点のデータをもとにした抽出箇所数は計 228 箇所 あり,指定箇所の 2 倍近く存在する。なお,この中には大規模盛土造成地指定箇所と重複する箇所が有 る。

図-5.3.5 小規模盛土造成地の抽出結果 (記載の番号は指定箇所の代表箇所)

図-5.3.6(1) 全抽出箇所と指定箇所の比較

図-5.3.6(2) 全抽出箇所と指定箇所の比較

図-5.3.6(3) 全抽出箇所と指定箇所の比較

5.3.4 兵庫県南部地震時の西宮市の建物被害状況の整理

(1)市域全体の被害集計

西宮市の建物被害状況図は,建築研究所及びその共同研究者である日本建築学会近畿支部及び日本都 市計画学会近畿支部に提供承諾依頼を行い承諾を得て使用した。

未調査建物を除くポリゴン総数 72,347 棟に対する被害割合は下図のとおりであるが、調査対象となった建物の半分程度に被害が生じており、そのうち約 1/4 が全壊となっている。

区分	ポリゴン数	割合	割合 (未調査除く)
全壊	9,456	10.3%	13.1%
半壊	7,893	8.6%	10.9%
一部損傷	17,819	19.5%	24.6%
無被害	37,111	40.6%	51.3%
焼損	68	0.1%	0.1%
未調査	19,036	20.8%	-
不明	0	0.0%	-
計	91,383	100.0%	-
計(未調査除く)	72,347	-	100.0%

表-5.3.5 建物被害内訳(全体)

図-5.3.7 建物被害内訳(全体)

出典:建築研究所及び日本建築学会近畿支部,日本都市計画学会近畿支部 提供データをもとに作成

(2)盛土造成地における建物被害

前述の建物被害データは,西宮市域の建物の約80%を調査対象としており,その調査対象家屋と,大 規模盛土造成地指定箇所をGIS上で重ねた図を次図に示す。盛土指定103箇所の内,概ね南部の56箇 所に建物被害状況データが存在する。北部地域については建物被害状況データがない。

図-5.3.8 建物被害状況の調査範囲と大規模盛土造成地指定箇所 出典:建築研究所及び日本建築学会近畿支部,日本都市計画学会近畿支部 提供データをもとに作成

(3)盛土造成地における人的被害

人的被害(人的被害数)有り町丁目(西宮市提供データ)のうち,大規模盛土造成地指定箇所を含む箇所は 13 箇所ある。

図-5.3.9 人的被害(人的被害)数有り町丁目を含む、大規模盛土造成地指定箇所

盛土 番号	震災時 町丁目	盛土 タイプ	盛土 長さ (m)	盛土 幅 (m)	盛土 高さ (m)	原地盤 勾配 (°)	盛土 厚さ (m)	地下水 の有無	盛土 末端部 擁壁	盛土 面積 (㎡)	造成 年代	人家 戸数	被災 履歴
南49-2	老松町	谷埋め	280	30	20	4.1	5	無	有	10,300	S33以降	24戸 共同棟8棟	
南90	松風町	谷埋め	390	35	32	4.7	6	有	有	9,900	S33以降	38戸 共同棟2棟	1995年被災 (豊楽町11番対策済)
南93	桜町 豊楽町	谷埋め	270	40	28	5.9	6	有	無	10,300	S33以降	16戸	
南104	殿山町	谷埋め	164	55	6	2.1	2	有	兼	9,600	S33以降	35戸	1995年一部被災 (殿山町2番対策済)
南111	霞町	谷埋め	275	38	2	0.4	4	不明	有	14,600	M19以前	47戸 共同棟7棟	一部被災 (雲井町1番対策済)
	<u>雲井町</u> 松園町	谷埋め	150	25	2	0.8	2	不明	無				
南112	大谷町	谷埋め	380	100	11	1.7	2	有	有	31,800	M19~M42	128戸 共同棟13棟	
南180	甲陽園本庄町	谷埋め	215	100	8	2.1	2	有	兼	16,500	S33以降	100戸以上 共同棟3棟	
		谷埋め	123	61	-	-	4	-	0.2				
南186-2	神垣町	谷埋め	75	71	6	4.6	2	無	兼	14,400	S33以降	71戸 共同棟4棟	
南186-3	桜谷町	谷埋め	430	60	33	4.4	5	不明	兼	23,800	S33以降	81戸 共同棟2棟	1995年一部被災 <u>(城山地区対策済)</u>
南200	上ケ原五番町	谷埋め	900	80	26	1.7	13	不明	無	119,900	S46,S51	共同棟14棟 学校施設	1995年一部被災 (高座12番・13番、 城山地区対策済)
	上ケ原七番町 高座町	谷埋め	720	40	30	2.4	8	不明	無				
南202	愛宕山	谷埋め	925	70	35	2.2	4	有	無	70,700	S49,S50	100戸以上 共同棟27棟	
	上ケ原四番町	谷埋め	120	32	10	4.8	5	-	-				
		谷埋め	100	65	15	8.5	5	有	-				
南213	仁川町6丁目	腹付け	16	47	6	20.6	2	有	有	6,900	S33以降	29戸	
南216	上ケ原九番町	谷埋め	670	70	30	2.6	8	無	有	100,900	S47,S52,他	100戸以上 共同棟23棟	
		谷埋め	350	70	10	1.6	6	無	無				
		谷埋め	355	60	20	3.2	6	無	無				

表-5.3.6 人的被害(人的被害)数有り町丁目を含む、大規模盛土造成地指定箇所の諸元

出典:「大規模盛土造成地マップ作成業務」(西宮市, H27.3)

(4)人的被害(人的被害数)有り町丁目と、建物被害、盛土指定箇所の位置関係

盛土指定箇所上にある建物のうち,建物の重心が指定範囲内の建物(下図の太い黒枠の建物)を該当建物として抽出し,被害程度に応じてカウントした。この際,重心が大規模盛土造成地外のもの(例:下図の赤い点線範囲)はカウントから除外した。

人的被害については,現段階では町丁目単位での人的被害数の有無しか把握できておらず,具体的な 建物の特定には至っていない。

これらの結果を利用し、盛土指定箇所にある建物を被害程度別にカウントし、人的被害有りの町丁目 が含まれる盛土指定地と、含まない盛土指定地の被害状況を集計した。

図-5.3.10 各データの重ね合わせと建物被害の抽出・集計方法

5.3.5 人的被害(死亡者数)有り町丁目別の建物被害状況

人的被害(死亡者数)有り町丁目を含む大規模盛土造成地指定地の建物被害状況を示す。

(1)南 213(仁川町 6 丁目)

- ・造成年代:S33以降
- ・盛土高さ:6m

(下)建物被害状況内訳

(2)南 180(甲陽園本庄町)

- ・造成年代:S33以降
- ・盛土高さ:8m

図-5.3.12 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(3)南 216 (上ケ原九番町)

- ・造成年代:S47,S52,他
- ・盛土高さ:10~30m

図-5.3.13 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(4)南 200 (上ケ原五番町,上ケ原七番町,高座町)

- ・造成年代:S46,S51
- ・盛土高さ:26~30m

図-5.3.14 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(5)南 202 (上ケ原四番町,愛宕山)

- ・造成年代:S49,S50
- ・盛土高さ:10~35m

図-5.3.15 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

図-5.3.16 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(7)南 90(松風町),南 93(桜町,豊楽町)

- ・◎南 90 ・造成年代: S33 以降 ・盛土高さ: 32m
- ・ ◎南 93 ・ 造成年代: S33 以降 ・ 盛土高さ: 28m

図-5.3.17 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(8)南 49-2 (老松町)

- ・造成年代:S33以降
- ・盛土高さ:20m

図-5.3.18 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(9)南104 (殿山町),南111 (霞町,雲井町,松園町)

・南 104 ・造成年代: S33 以降 ・盛土高さ: 6m

・南111 ・造成年代: M19 以前 ・盛土高さ: 2m ※13 箇所中では全壊率が最も高い

図-5.3.19 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(10)南 112 (大谷町)

- ・造成年代:M19~M42
- ・盛土高さ:11m ※全壊率 3番目

図-5.3.5.20 (左)建物被害状況と該当町丁目 (右)大規模盛土造成地カルテ平面図 (下)建物被害状況内訳

(11)仁川百合野町地区

地すべりにより,家屋倒壊13戸,死者34名に及ぶ甚大な被害が生じた地域である。大規模盛土造成 地の指定箇所ではないが,参考までに示す。

(左)建物被害状況内訳 (右)崩壊前の地形と崩壊性地すべりの範囲
 出典:応用地質技術年報,兵庫県南部地震特集号(1997)

5.3.6 被害程度の比較

(1)全壊率の比較

箇所別の建物被害の集計より全壊率を算出し、下記に示す。

人的被害(死亡者数)有の町丁目を含む大規模盛土造成地では,他に比較すると全壊率が高い傾向を示している。

図-5.3.22 建物全壊率の比較

	西宮市建物被害								全壊率		
	全壊	半壊	一部 損傷	無被害	焼損	未調査	不明	計	計 (未調査 除く)		計 (未調査 除く)
西宮市建物被害	9, 456	7, 893	17, 819	37, 111	68	19, 036	0	91, 383	72, 347	10. 3%	13.1%
大規模盛土 (建物被害データ有 56箇所)	241	248	485	916	1	472	0	2, 363	1, 891	10. 2%	12. 7%
死亡者有町丁目含む (13箇所)	154	110	230	260	0	220	0	974	754	15. 8%	20.4%
死亡者有町丁目含まない (43箇所)	87	138	255	656	1	252	0	1, 389	1, 137	6. 3%	7.7%

(2)人的被害(死亡者数)有の町丁目を含む大規模盛土造成地の建物被害割合

人的被害(死亡者数)有の町丁目を含む大規模盛土造成地 13 箇所について, 建物の被害割合を下図に示 す。

盛土指定箇所の内,南 111(霞町,雲井町,松園町)および,南 186-2(神垣町)が他の地点に比較すると非 常に被害程度が大きいことを示している。

図-5.3.23 人的被害数有り町丁目含む大規模盛土の建物被害内訳

(3)造成年代別の被害程度の比較

西宮市の丘陵地は都市圏に近く,戦後の高度成長期以前から宅地開発が進んでおり,比較的造成年代の古い盛土地が多いことが特徴である。大規模盛土造成地指定100箇所について,旧版地形図・空中写真の判読,行政許認可資料の調査等から造成年代を推定し,その内訳を図-5.3.24に示す。この中で,宅地造成等規制法が施行された昭和36年(1961年)以前に造成されたと推定される盛土地が30箇所ある。

造成年代	大規格 造成地	莫盛土 .箇所数
1944(S19)以前	5	5.0%
1961(S36)以前	25	25.0%
1974(S49)以前	38	38.0%
1988(S63)以前	31	31.0%
2006 (H18) 以前	1	1. 0%
造成年代不明	0	0.0%

図-5.3.24 大規模盛土造成地指定100箇所の造成年代内訳(西宮市域南部)

図-5.3.25 大規模盛土造成地指定100箇所の造成年代内訳(西宮市域南部)

大規模盛土造成地指定地の内,建物被害データの有る 54 箇所について,造成年代別の建物被害率を 図-5.3.26 に示す。宅地造成等規制法が施行された昭和 36 年(1961)以前に造成されたと推定される盛土 地の全壊率は,それ以降の造成年代と推定される盛土地と比較すると,高い傾向を示している。この傾 向については,沖村ほか(1999)5)でも指摘されている。

図-5.3.26 造成年代別の建物全壊率の比較 (大規模盛土造成地指定地の内,建物被害データの有る 54 箇所)

図-5.3.27 造成年代別の建物被害程度の比較

(大規模盛土造成地指定地の内,建物被害データの有る54箇所)

(4) 地形区分別の被害程度の比較

西宮市域の地形は、北から六甲山地北側の盆地、六甲山地南側の丘陵・山麓地、大阪湾岸沿いの平野 と、3つの地形大区分に区分される。市域全体の建物被害は、平野部の軟弱地盤での被害棟数も多く含 まれることから、地形区分別の整理を行った。盛土造成地が立地する条件の地形大区分として、丘陵地・ 山麓地に着目して被害状況を検討した。建物被害データのある西宮市域南部の内、250m メッシュ地形 区分 5)を用いて、「丘陵・山麓地」は扇状地・砂礫質台地・丘陵・谷底平地等に分類されるメッシュ、「平 地部」は自然堤防・後背湿地・三角州海岸・埋立地等に分類されるメッシュとし、両者の境界は概ね地 形変換点に並行した南西~北東方向の線で示される(図-5.3.28)。このラインは西宮市の宅地造成工事規 制区域の指定区域の南限ラインとほぼ調和的である。

図-5.3.28 地形区分

地形大区分毎に被害率を集計した結果を図-5.3.29に示す。丘陵・山麓地区分において、人的被害有り 町丁目を含む大規模盛土造成地の建物被害は、他に比較して被害率が高い傾向を示す。

図-5.3.29 地形大区分の建物全壊率の比較(建物被害データの有る西宮市域南部)

地形大区分毎に,盛土・非盛土毎の建物全壊率の比較を図-5.3.30に示す。平地部全体の全壊率は12.2% であるが,「丘陵・山麓地」の中で人的被害有り町丁目を含む盛土地区分は19.4%と,他に比較して全 壊率が高い状況を示す。

「丘陵・山麓地」および「平地」大区分における地形小区分(盛土造成地以外を含む)毎の建物被害を 図-5.3.31 に示す。「丘陵・山麓地」大区分の中では扇状地,「平地」大区分の中では「旧河道」「後背湿 地」区分が他の地形区分に比較して被害率が高い状況を示す。

図-5.3.31 地形区分毎の建物被害

5.3.7 おわりに

今回の研究では、震災発生時から時間が経過していることや個人情報の観点から、具体的な人的被害 の位置と家屋の詳細位置との関連を詳細に検討するまでは至らなかった。造成年代で比較すると、宅地 造成等規制法施行(S.36)以前に造成された古い盛土地を中心に建物被害率が高い傾向が把握された。ま た、人的被害の有無で比較すると、人的被害のあった町丁目を含む造成盛土地では比較的被害率が高い 傾向も把握された。造成盛土地、中でも造成年代の古い造成盛土地について、耐震化事業を推進するこ とで、人的・建物被害を軽減できると考えられる。

なお、建物被災状況調査結果は、国土技術政策総合研究所都市研究部石井儀光氏、摂南大学理工学部 福島徹先生ご両名にご助言戴くと共に、国立研究開発法人建築研究所、一般社団法人日本建築学会近畿 支部、公益社団法人日本都市計画学会近畿支部の承諾を得てデータを借用した。西宮市都市局建築開発 指導部開発審査課山崎勝博氏には盛土造成時期についてご助言戴いた。各位のご指導およびご協力に深 謝します。

5.3 参考文献

- 1) 西宮市都市局:大規模盛土造成地マップ【南部】,西宮市都市局,2015
- 2) 西宮市消防局: 阪神・淡路大震災西宮市消防の活動記録, 西宮市消防局, 1996
- 3) 建設省建築研究所:平成7年兵庫県南部地震被害調査最終報告書,建設省建築研究所,1996
- 4) 沖村孝・二木幹夫・岡本敦・南部光広:兵庫県南部地震による宅地擁壁被害の特徴と原因,土木
 学会論文集, No.637, IV-45, p.40, 1999
- 5) 若松加寿江・松岡昌志:全国統一基準による地形・地盤分類 250m メッシュマップの構築とその 利用,地震工学会誌, No.18, pp.35-38, 2013

6章 おわりに

地盤工学会関西支部では、平成28年4月から3年間「関西の地盤情報に基づく防災ハザードマップ 開発研究委員会」を立ち上げ、近年頻発している地震や豪雨による地盤災害に対して、市民の防災意識 の向上や防災行政の一助となる防災ハザードマップの開発に関して、産官学の専門家が集まり研究活動 を行ってきた。防災ハザードマップについては各自治体においても整備されているものの、本委員会で は関西の地盤情報を集約している「関西圏地盤情報データベース」を活用し、より精緻な地域特有の地 盤情報を用いて地震に関するハザードマップを作成したものである。また、地震と豪雨の複合災害に関 する検討や線状構造物のリスク評価、盛土地の被害相関分析等に対しても多様な検討を行い、地盤災害 に対する地盤情報の有用性を確認したものである。

以下に各WGで検討した結果をもとに取りまとめた提言内容を記載する。

・地震による揺れやすさと液状化検討 WG (WG1)

地域の地震ハザードの評価にあたっては、地域の地盤特性を正しく把握することが重要である。 地域の地盤調査データを収集し、少なくとも土質区分毎に整理できることが望ましい。大阪の場合 は、地盤情報データベース等を参照することで、これらの評価を進めることができるものと考えら れる。

地盤の応答特性を評価する上では、土質区分毎の動的変形特性、ならびに液状化強度のモデル化 が必要である。また、等価線形解析や逐次非線形解析といった複数の解析手段による評価が可能な 場合には、結果の妥当性、精度の検証といった目的のため、複数の結果を参照することが望ましい。 液状化評価においても道路橋示方書の式のみでなく、複数の結果を参照することが望ましい。

いずれの評価においても、現地において詳細な地盤調査を実施することが最善であることは言う までもないが、評価対象の目的や重要度を鑑みて事業者の判断のもと最適な現地調査を進める必要 がある。

・地震・豪雨による土砂災害検討WG(WG2)

過去の地震において,崩壊や地すべり等の斜面変動による災害が都市部の丘陵住宅地や中山間地 等において広域的に発生しており,南海トラフ巨大地震でも道路・鉄道といった線状構造物,ライ フラインへの甚大な被害及び地震後の復旧・復興に大きな影響を与えることが懸念される。

これまでの豪雨に対する斜面災害の危険箇所の抽出とともに,地震による土砂災害の被害を軽減 するため,災害発生の危険度を評価することが課題である。そのためには以下のような検討が必要 となる。

南海トラフ巨大地震で予測される斜面崩壊危険度の推定、危険地域の推定

- ・豪雨時と地震時における斜面崩壊発生の素因の関連性検討
- ・地震後の降雨による土砂災害危険度の暫定基準の引き下げ等の合理的な設定方法
- ・豪雨時と地震時の複合的な斜面災害の危険性に関する防災情報の発信のあり方

上記の検討結果を整理し,鉄道構造物をはじめとしたインフラ,宅地等が分布する斜面・盛土の 崩壊危険箇所の抽出や被害予測,管理手法の設定等を行うことが望ましい。

・防災ハザードマップ検討 WG(WG3)

本委員会や、これまでに活動してきた委員会、他の学会・協会等では、地盤情報データベース(以下DBと略す)を活用した防災ハザードマップ(以下HMと略す)に関する様々な研究が行われている。 このうち、関西圏地盤情報ライブラリ(KG-NET)では一般市民向けにその地盤情報 DB の公開が行われているが、防災 HM ツールとしての公開事例はまだ少ない状況であり、本来の目的「市民の生存のための情報発信」を念頭に、地盤工学分野からの社会還元として防災 HM・ツールを公開し、防災意識の向上を促すことが必要である。

ライフライン防災のうち,鉄道は道路や空路,航路と同様に,地域のネットワークとなる重要な 交通基盤施設である。確実な襲来が予想されている南海トラフ巨大地震災害時に,特に関西圏での 鉄道網の支障が発生すると,日本列島の東西方向のロジスティクスに支障を来すことは,兵庫県南 部地震時の事例からも明らかである。特に鉄道における盛土構造物は,剛構造物である橋梁等耐震 性の強弱のコントラストが大きく,部分的な機能障害が一定の区間全体の機能不全に陥る恐れがあ る。橋梁については耐震対策が進んでいるが,軟弱地盤上の盛土についても耐震対策が望まれる。

宅地防災の観点では,近年,大規模盛土造成地に対する宅地耐震事業(滑動崩落防止対策)が進め られているが,歳出・歳入一体改革が進められる中で,円滑な事業化に苦心している自治体が多い。 このため,地震時の宅地被害と地盤特性との相関性や,耐震対策の有効性についてのデータを示す ことで,有効なツールとなり得る。

いずれも、今後予想される南海トラフ巨大地震災害の被災規模を想定すると、被害の予想される すべての宅地やライフライン機能を事前対策によって機能確保することは不可能であり、重要度・ 被害程度に応じて事前の対策を考えていく必要がある。そのためには、被害を低減させるレベル、 重要度、被害程度の3つの観点によって、現状と目標(社会的要請)のギャップを把握し、我々地盤 工学界としても、持てる見識を積極的に公開・提供してゆくことが求められる。

なお、本委員会の活動においては、既往資料や各種の基準書、文献等を基にした検討の他に、委員会 活動中に発生した地震や土砂災害の現地視察や、常時微動測定、ボーリング調査、物理探査等の現地調 査を実施し、多様な検討の一助としたものである。

本研究の成果の一部は,毎年実施されている地盤工学研究発表会や Kansai Geo-Symposium 等で報告を行った他,最終成果報告会を2019年9月20日に大阪市内で実施する予定であり,本報告書はその場で配布する予定である。この報告書には,地震時の各地域の地盤特性(揺れ方,液状化の程度等)やその推定法の留意点,地震と豪雨災害との関連性,盛土地における災害特性等,現在における地盤工学上の最新の成果が取りまとめられている。この成果は,地盤工学に携わる企業や行政の方々のみならず,特にハザードマップについては一般市民の防災意識の向上や災害に関する知識,備えに役立つものと推察される。また,今回作成したハザードマップについては,大阪市域を中心としたものであるが,250mメッシュ状に精度の高い地盤モデル,動的特性を設定していることから,任意の地震動における任意地点での精度の高い地震特性をアウトプットすることが可能であり,例えば線状構造物における弱部の抽出や対策優先度の設定等においても有意なツールとなることと思われる。これらの成果を活用して頂き,将来の地震・豪雨災害に対する被害抑制に繋がれば幸いである。

しかしながら、地震や豪雨災害等の自然災害は、現在の最新技術やハザードマップの整備を行っても

簡単に防げるものではない。的確なハード対策の他,精度の高い予測技術,災害に対する備え,発災時 の人的協力,情報の伝達,迅速な復旧等の対応で人的被害を最小限に抑えることが必要である。これら は、土木工学分野だけでなく,理学や化学工学,情報工学等の異分野との連携等が重要であること,ま た,発災時に重要なタイムライン(防災行動計画)の設定に際しては,行政や地元住民との連携の他, 地元建設会社やライフライン関係機関,流通業界等の民間の力を結集することが重要である。

今後も多くの自然災害が発生し,我々の社会生活を脅かすものと思われるが,その都度住民全員が力 を結集し危機を乗り越え,次世代に自然災害からの教訓を継承していくことで,被害の抑制だけでなく 人類と自然の調和,共生が叶うものと願っている。

最後になるが、本研究委員会の活動に対して一般財団法人レントオール奨学財団、及び西日本旅客鉄 道株式会社より研究助成を頂いた。また、西宮市の関係部局との共同作業により盛土地の被害分析を取 りまとめた他、大阪府の関係部局からは地盤の変形特性や上町断層の地震波データ等を借用し、詳細な 解析のインプットデータとすることができた。記して謝意に代えさせて頂きたい。

付録1 弁天町地区の現地調査

7.1 弁天町地区での地盤調査結果

7.1.1 調査概要

- (1) 調査場所・期間・時間
 - 場所:大阪市港区波除
 - 期間:平成30年6月4日(月)~6月23日(土)の3週間(土曜は実施,日曜は非実施)
 - 時間:午前8時~午後5時(遅くとも5時半には現場から撤収)

(2) 調査の背景と目的

公益社団法人地盤工学会関西支部の「関西の地盤情報に基づく防災ハザードマップ開発研究委員 会」(委員長:大島昭彦)では、近年の激甚化する地震や豪雨などの自然災害による災害リスクをよ り正確に捉えるために、地盤情報に基づく防災ハザードマップの整備が重要と考え、2016年から活 動している。その一環として、線状構造物を対象に、「250mメッシュ表層地盤モデル」を用いて地 震時の液状化危険度の分布を調べ、対策の必要性を提示する予定である。ただし、そのモデルによ る結果の信頼性を確保するためには、ある適切な地点を対象に地盤調査から液状化予測解析まで行 うケーススタディが必要である。そこで今回、弁天町地区を対象にケーススタディを行うこととし た。弁天町地区周辺の地盤は、表層に地震時に液状化の可能性がある沖積砂層、その下には地盤沈 下リスクを持つ軟弱な沖積粘土Ma13層が厚く堆積し、その下に構造物の支持層となる第1洪積砂礫 層、洪積粘土Ma12層が続く。このように西大阪地域の典型的な地盤性状を持つため、ケーススタデ ィとして適切な場所と考えられる。

地盤調査では、まず、Ma12層下端の第2洪積砂礫層まで約58mのボーリング調査(沖積砂層,沖 積粘土Ma13層,第1洪積砂礫層の連続的なN値測定と洪積粘土Ma12層のサンプリング,PS検層)及 び深度約30mのボーリング調査(沖積砂層と沖積粘土Ma13層のサンプリング)を行う。サンプリン グした沖積砂層の液状化試験による液状化強度の把握,Ma13・Ma12層の圧密試験による地盤沈下 の評価を行う。さらに、ボーリング地点の近傍で各種サウンディング試験(動的コーン貫入試験, 電気式コーン貫入試験,スウェーデン式サウンディング試験など)や物理検層も行い,沖積砂層の 液状化危険度の評価,各種サウンディング試験と室内力学試験との相関性も求める。

また,調査結果に基づく解析として,地震応答解析による敷地の応答特性,沖積砂層の液状化危 険度,地盤沈下の可能性,常時微動アレー観測による深部地盤特性の検討も行う。

- (3) 調査実施責任者
 - ·大阪市立大学大学院工学研究科都市系専攻 地盤工学研究室 教授 大島昭彦
 - ・基礎地盤コンサルタンツ(株)関西支社 久保田耕司

(4) 調査位置及び数量

地盤調査は,弁天町地区で実施した。図-7.1.1 に調査地点の位置図を示す。敷地内に,11m×7m程度の敷地を借用して各種調査を行った(別途,作業車の駐車スペースも確保)。

図-7.1.1 調査地点位置図

(5) 調査内容と数量

図-7.1.2 に各種調査の配置図を示す。各種調査は 1m 区画の中央で,以下の①~⑮の調査を行った(約 50 点削孔)。

- ボーリング No.1 (標準貫入試験 SPT, サンプリング, PS 検層): 基礎地盤 C・大阪市大 深度 0~11m: As 層を対象に 0.5m ピッチで SPT を連続実施 深度 11~42m: Ma13 層, Dg1 層を対象に 1m ピッチで SPT を実施 深度 42~54m: Ma12 層を連続サンプリング (デニソンサンプラー) 深度 54~58m: Dg2 層の SPT+素掘り 5m で PS 検層 (⇒Dg2 層の地下水位観測井を設置)
- ② ボーリング No.2 (サンプリング):基礎地盤 C・大阪市大 調査深度 2~11m:トリプルサンプラーで As 層を連続サンプリング(液状化試験へ) 調査深度 11~34m:水圧式サンプラーで Ma13 層を連続サンプリング(SPS 試験) 調査深度 34~40m: Dg1 層を素掘り(地下水位観測井を設置)
- ③ ボーリング No.3 (サンプリング):応用地質・アテック吉村 調査深度 2~11m:GS サンプラーで As 層を連続サンプリング(液状化試験へ)
 ②のトリプルサンプラー試料との液状化強度の比較(⇒As 層の地下水位観測井を設置)
- ④ バイブロドリルボーリング試験(Vibro_Br.):サムシング
 調査1点:バイブロボーリングによる SPT(半ペネ,半コア)を深度 39m まで

図-7.1.2 各種調査の配置図

- ⑤ 大型動的コーン貫入試験(SRS 全自動式):大和ハウス工業・ウィルコンサルタント・大阪市大調査6点:通常測定(全トルク測定25,15m),新型開閉式SPによる試料採取(12m),摩擦力測定1回(新型機15m),音測定3回(異なるコーン18m),
- ⑥ 大型動的コーン貫入試験(SRS 半自動式):トラバース 調査2点:通常測定2点(全トルク測定25m)
- ⑦ 中型動的コーン貫入試験(MRS 半自動式):積水ハウス・地盤調査システム
 調査3点:通常測定2点(全トルク測定20m),試料採取:手動式 Vibro SP を1点(11m)
- ⑧ SH 貫入試験(SH): アサノ大成基礎エンジニアリング 調査2点:1打撃毎の貫入量を自動測定(8.5, 9.3m, 3kgと5kgハンマーを切換え)
- ⑨ 簡易動的コーン貫入試験(PDCPT):大阪市大 調査3点:トルク測定(10m)
- 10 RI コーン貫入試験 (RI-CPT): ソイルアンドロックエンジニアリング
- 調査2点:RI-CPTによる三成分(先端抵抗,間隙水圧,周面摩擦)及び含水量,密度を36m (砂礫層の上面)まで測定,海外製のビデオコーン(地中内をビデオ撮影)を2点で実施。
- ① 電気式コーン貫入試験(CPT):報国エンジニアリング 調査1点:三成分(先端抵抗,間隙水圧,周面摩擦)を7.2m測定。
- ¹¹ スウェーデン式サウンディング試験 (SWS N):積水ハウス・積和建設関西

調査 12 点:通常の JIS 仕様を 2 点 (25m), ISO 仕様を 2 点, JIS と ISO の ScrewPoint とロッドの組合せを 4 点, 摩耗 ScrewPoint 試験を 2 点, 試料採取:新型 SP を 2 点 (11m)

- ③ スウェーデン式サウンディング試験(SWS_N):報国エンジニアリング
 調査3点:通常測定2点(25m),地下水位測定,機械式 Vibro SP を1点(11m)
- ④ スウェーデン式サウンディング試験(SWS_T, Wsw 測定):トラバース 調査3点:通常測定(25m×2点),試料採取:ドリルSPを1点(11m)
- ⑭ スクリュードライバーサウンディング試験 (SDS):ジャパンホームシールド

調査7点:SDSを2点(25m),高荷重SDSを2点(25m),SWSを1点(25m),SPを2点 ⑤ 表面波探査(起振機方式):ビィック

調査2点:起振機の周波数を変えながら深度方向のレイリー波速度V.を測定 また、これらとは別に、JR西日本からの依頼で、深度6.85m、9.85mに土壌水分計を埋設するボー リング削孔No.4、No.5を行った。

さらに、常時微動アレー観測、及び表面波探査(多チャンネル式)も実施した。

(6) 地下水位観測井の設置

ボーリングNo.1, 2, 3孔を利用して, それぞれ第2洪積砂礫(Dg2)層, 第1洪積砂礫(Dg1)層, 沖積 砂(As)層の地下水位の観測井を設置した。水位計の設置位置と設置状況を**写真-7.1.1, 7.1.2**に, 設置図を**図-7.1.3**に示す。

写真-7.1.1 水位計の設置位置

写真-7.1.2 水位計の設置状況

図-7.1.3 地下水位計の設置図
(6) 調査工程表

表-7.1.1に示す調査工程で行った(2018/6/4~6/21)。

表-7.1.1 調査工程

7/4に微動アレー調査を実施済み、7/31には表面波探査(多チャンネル式)を実施予定。

(7) 地盤調査方法の説明

a) ボーリング・標準貫入試験 (SPT)

ボーリング(Boring)とは,掘削機を用いて地盤内に孔を掘る方法または作業をいう。建設工事では、サンプリング(試料採取)、サウンディング(地盤強度)、調査機器設置などのための削孔として行われる。ボーリングマシンの例を図-7.1.4に示す。

標準貫入試験は、図-7.1.5に示すように63.5kgのハンマーを76cmの高さから自由落下させて、 ボーリングロッド頭部に取り付けたアンビル(ノッキングブロック)を打撃し、ボーリングロッド 先端に取り付けた SPT サンプラー(外径 51mm、内径 35mm)を 30cm 貫入させるのに要する打撃 回数を N 値として計測する。N 値は地盤の強さを表す標準的な指標となっている。一般に N 値 10 以下の砂地盤は液状化危険度が非常に高いと言える。また、サンプラーにより試料採取も同時に行 うことができるので、地盤構造の複雑な日本で多用されている。

b)動的コーン貫入試験

先端に円錐形のコーンを取り付けたロッドをハンマーの打撃によって地盤に打ち込み,貫入量と 打撃回数の関係から地盤の硬軟・締まり具合を調べる試験である。動的コーン貫入試験には打撃仕 様の規模の違いでいくつかの種類があるが,本調査で行った試験を**表-7.1.2**に示す。

	ハンマー	落下高	ロッド	コーン	コーン	貫入量	
試験名	質量(kg)	(mm)	直径(mm)	直径(mm)	角度(°)	(mm)	適用性
大型動的コーン(SRS)	63.5	500	32.0	45.0	90	200	標準貫入試験の補間
中型動的コーン(MRS)	30.0	350	28.0	36.6	90	200	標準貫入試験の補間
SH 貫入試験	3.0 or 5.0	500	16.0	25.0	60	100	宅地,急傾斜地用
簡易動的コーン(PDCPT)	5.0	500	16.0	25.0	60	100	宅地,急傾斜地用

表-7.1.2 各種動的コーン貫入試験の仕様

i) 大型・中型動的コーン貫入試験 (SRS, MRS)

宅地の杭状地盤補強(深層混合処理工法,小口径杭工法など)の支持層を確認する目的で,また スウェーデン式サウンディング(SWS)試験(1.7.3参照)の貫入力不足を補い,かつ標準貫入試 験(SPT)を平面的に補間する目的で,大型・中型動的コーン貫入試験がよく用いられるようにな ってきた。

図-7.1.6 に示す大型動的コーン貫入試験(通称:ラムサウンディング,SRS)は、質量 63.5kg のハンマーを高さ 50cm から自由落下させ、貫入量 20cm 毎の打撃回数 N_d値を連続測定する。ただ し、単管式によるロッドの周面摩擦の影響を除くために、ロッドの回転トルクを測定して打撃回数 を補正する方法が採られる。全自動式ではロッドの継ぎ足し以外は自動で打撃と計測が行われるた め、作業効率が高く、低コストな地盤調査方法である。さらに、SPT と単位貫入量当たりのエネル ギーが同じとなるため、一般に N_d 値=N 値といわれている。本調査では、全自動式(YBM 製)と 半自動式(トラバース製)の2種類の試験機を用いた。

また、大型と同じ構成で装置を軽量化した中型動的コーン貫入試験(通称:ミニラムサウンディング、MRS)もよく使われている。コーン単位面積当たりのエネルギーが大型の1/2のため、打撃回数を1/2に補正することで大型と同等な Na 値が得られるとされている。

ii) 簡易動的コーン貫入試験 (PDCPT)

図-7.1.7 に簡易動的コーン貫入試験を示す。この試験は質量 5kg のハンマーを 50cm の高さから自由落下させ、貫入量 10cm 当たりの打撃回数 N_d値を測定するものである。小型・軽量で携帯性に優れていることから、傾斜地の表層土の調査、斜面崩壊地の調査、小規模建築物(戸建て住宅)の支持力調査などに用いられている。ただし、ロッドが単管式であるため、貫入が深くなるとロッドと地盤の周面摩擦が大きくなり、N_d値が過大に測定されるので、適用深度は地盤表層部の 4~5m程度に限定される。本調査でトルクを測定して周面摩擦の補正を行った。

また, 簡易動的コーン貫入試験と基本的に同じ仕様で, ハンマー質量 3, 5kg を使い分けて 1 打撃毎に貫入量を測定して N_d値を求める SH 貫入試験も実施した。

c) スウェーデン式サウンディング試験 (SWS)

スウェーデン国有鉄道が1917年頃に開発した試験で、日本には1954年頃に導入された。大手ハウスメーカーを中心に1980年代初めから戸建住宅の地盤調査方法として採用されてきた。2001年に国土交通省告示第1113号において、地盤の許容応力度の算定式が示されたこと、全自動式試験機が開発されたことを機に、一気に普及し、現在では宅地の地盤調査の標準試験となっている。試験方法はJISA1221で規定されている。

SWS 試験は、図-7.1.8 に示すようにロッド(Ø19mm)の先端にスクリューポイント(最大径Ø33.3mm,四角錐を右ねじり1回を与えたもの)を取り付け,0.05,0.15,0.25,0.50,0.75,1kN(5,15,25,50,75,100kgf)の荷重 W_{sw}を順次載荷した時の貫入量,及び1kNで貫入が止まった後に25cm回転貫入させた時の半回転数 N_aを貫入量 1m 当たりに換算(4倍)した半回転数 N_{sw}を測定する。W_{sw}と N_{sw} から土の硬軟や締まり具合を判定でき、地盤の強度定数や支持力度を推定することができる。

SWS 試験の装置には、図-1.8 に示す手動式の他に、調査作業の省力化や試験精度向上を目的に 開発された半自動式(荷重載荷は手動,回転貫入は自動)と全自動式(荷重載荷・回転貫入及び計 測は自動,ロッドの継ぎ足しのみ手動)のものがある。実務ではほとんど全自動式が用いられ、本 調査でも2社(日東精工、トラバース製)の全自動式試験機を用いた。

d) バイブロボーリング

振動および圧入力によるケーシングチューブの地中への貫入,ケーシング内部に設置したチュー ブサンプラー内の土砂抜き取り,チューブサンプラーの再セットの3ステップから,1m毎に土試 料を連続採取することが可能な装置による(**写真-7.1.16**参照)。また,標準貫入試験(N値測定) も実施できる。ここでは,50cmピッチで半ペネ・半コアを実施した。

e) 電気式コーン貫入試験(CPT)

図-7.1.9に示すように、先端に円錐形のコーンを取り付けたロッドを静的に圧入し、地盤のコー

ン貫入抵抗を深さ方向に連続的に求める試験である。本試験では、コーン先端貫入抵抗q_t、土とスリ ーブの周面摩擦抵抗f_s、及びコーン直上のフィルター部の間隙水圧uを測定するため、「三成分コーン 貫入試験」とも呼ばれる。今回はさらに、放射線(ラジオアイソトープ)を用いて含水量と密度を 測定するRI-CPTを実施した。

図-7.1.9 電気式コーン貫入試験装置の例

f) GSサンプラー

図-7.1.10に示すような固定ピストン式二重管サンプラーで、試料の脱落及び共回りを防ぐための固定ピストンと中間ロッドを内蔵し、掘削水の送水圧等が直接地盤へ影響しないよう掘削ビット 側面に掘削水経路を設けているのが特徴である。最近では液状化目的の調査として高品質のサンプ ラーとして用いられている。本調査ではBor.3で実施し、通常のトリプルサンプラーで採取した試料 (Bor.1で)との比較(液状化試験,変形試験)のために実施した。

(8) 試験機の写真

写真-7.1.3~7.1.20 に本現場で使用した地盤調査の装置,試験機を示す。

写真-7.1.3 ボーリング作業全景 写真-7.1.4 サンプリング(トリプルサンプラー)

写真-7.1.5 サンプリング(デニソンサンプラー) 写真-7.1.6 サンプリング(水圧式サンプラー)

写真-7.1.7 大型動的コーン貫入試験(全自動式) 写真-7.1.8 大型動的コーン貫入試験(半自動式)

写真-7.1.9 中型動的コーン貫入試験(半自動式)

写真-7.1.10 簡易動的コーン貫入試験

写真-7.1.11 SH 貫入試験

写真-7.1.12スウェーデン式サウンディング試験-1

写真-7.1.13 スウェーデン式サウンディング試験-2 写真-1.14 スウェーデン式サウンディング試験-3

写真-7.1.15 SDS 試験(高荷重型)

写真-7.1.16 バイブロボーリング

写真-7.1.17 RI-CPT

写真-7.1.18 PS 検層(サスペンション法)

写真-7.1.19 GS サンプラー試料

写真-7.1.20 表面波探査

7.1.2 地盤調査結果

(1) ボーリング結果

図-7.1.11, 7.1.12 にボーリング No.1, No.2 柱状図を示す (No.2 はサンプリング孔)。

調 査 名 (2018) 関西の液状化地盤の詳細評価に関する研究

					事業	ŧ	I	事名	3			_	_	_	_	_				_						シ	1	Va.					
ボー	リン	グ名			Ν	ο.	1		調査位置	大阪市	港[國 波	ŧ (k													北		緯	3 4	•	40'	1 5	5 "
発	注相	幾関												調査	期間	間	区成	30年	F 6	月	4日	~ :	30年	6月	12 F	東		経	1 3	5°	27	4	1 "
調査	を業	者 名	基礎	地盤コン	ンサルタ 電話 ((シンツ	株式 186	会社 1-	関西支社 7000) 主任技師	大島	昭] 彦		現代:	理ノ	湯人	久保	田	耕言	1 4	コ産産	ア者	大馬	- 昭	彦	ボ責	-リ: 任	ング 者		門	万二	二郎	S
孔		票 高	+]	TP 1.00m	角	180° 上	1 9	nº	方 北 0°	地盤~水	;平0°	化月	吏	試	谁相	幾		K O	KE	N	0 E -	- 8		ハンマ	マー 月具			半	自員	防 落	下		
総	掘〕	隹 長	5	8.33m	度	F)°		西 180° 南	勾 首 配 90°	0°	- お	幾重	ェン	ジン	~	+	2	7-	- 1	NFD	-13		ポン	プ		K	(0 K	ΕN	MG	- 1	0	
			_			10	<u> </u>	_		100		2	_												_			_	_			_	
標	標	層	深	柱	土	色	相	相	記		P	れ	_			ter.	標	售 1	買フ	入	試	験			原	位	置	鴙	験	試料	採耳	反当	室 掘 内
					質		対	対			7.1	水道	架 1	10cm ご	との 可数	打撃回				Ν		値			深	同志	に !! ; よ で	検 び結	名 果	深	試技	部態	式 進
尺	高	厚	度	状	17		ste	-				m) 	ŧ	0 10	20	数/									度	1				度	料耳	ż -	~ _
							m	174			2	則定		2 2	2	貫入															番ナ	ī	
(m)	(m)	(m)	(m)	図	分	調	度	度	事)	月 日(1	m) j	10 20	30	量 (cm)	0	10	0	20	3	0	10	50	60 (m)				/	(m)	号沾	<u></u>	~ 日
	0.10	0,90	0.90	0.000	砂礫	暗褐	級い		砂は粗砂。¢2~30mmの樹 レンガ片混じる	転混じる		0	.45 .45		1	3/08/	8	~								↑							
	-0.25	0.35	1.25	777	シルト9 砂	暗褐	非常緩い		砂は細砂 礫層(2~10mm)挟む。暗羽	·褐色挟む	6		.15	1 50 .		1																	
2	-0.90	0.65	1.90		砂質シバ ト	暗灰		軟ら かい	微細砂をシーム状に連続 ト部 細心域す。	として挟む		- 1.	.65	15 35	100	18/3	2	-		+	_		-	-	-		<u>е</u> г		_				-
3					37			軟	全体に軟らかい 木片、木削所々に混じる) to Earth to		2 3 3	.50	6 27	2自2	1.50	00			_					_	品	査士 		_				-
					ルト	暗灰		らか	2.30回引起、戦利留(ハフク) & 2008/261.		3	.45 -98	₹×な	2自該 15	45										꼬	₽Ţ	-					
	-3.75	2.85	4.75						3.90~4.15m、シルト混し む	こり砂層挟		4.	.15	1 2	2	1	10																
5	-4.30	0.55	5.30	0.000	砂礁	暗褐灰	縦い	44.2		木片混じ		4	-18 :	5 12	8	23~1/39	6 2 0	2		+	_		-	-	-	ŀ			-				-
6	-4.85	0,55	5.85	 · · · · ·	シルト	暗厌	10	軟らかい	「広福的派しる 下層部、細砂多く混じる 砂は細砂。			9 14	(j)		12	1391				+	_		_	-	+	¥.			_				6
				1			常に		シルトをブロック状、薄 挟む	層で所々に		10	植態	12 T 1	8	30 / 30	3 0									Ť							4
E (2		級い		7.50mより、中砂を所々に	-141-		7	将 '	8 2	3/12	1063/0	6	8															
8				/	ルト	a.tr.	後		貝殻片若干混じる シルト薄層で所々に挟む	P		42	册 括 1	2 12	8	34/39	8	~	>	+				-	-			TT	_				-
E 9				· · · · ,	混 じ	原	2		8.40~8.60m間、中砂挟t 貝殻片若干混じる	3。含水大		8	Ħ	1 3	4	198/9	6	9		_				_	_		15_		_				-
Ē.,				/	り 砂		~ 5		シルトをプロック状、薄	層で所々に		8	植	2 3	3	30	8	ð															
E 10							2		一部、雲母片多く混じる	Thits		10	3.15	1 1	4	198/9	6	¢															
11	-10.40	5.55	11.40				殺い		PARTY PARTY			10	1.15	2 1	2/15	30 -/ 50	8	Z							_	¥			-				-
12				Ż	砂質シバ	暗		軟ら	砂質シルト主体 シルト混じり砂層を薄層	で所々に挟		12	1.58		17	1.38	3 9	<u> </u>		+				-	_	1-			_				6
Ē	-12.00	1.60	13.00		ŀ	灰		かい	む 一部、微細砂多く混じる			12	2.15	15 9	8	32	3 0																5
E 13				-//	2							13	3,15	14	9	33	3 0																
14				7	ルト	暗		軟ら	全体に軟らかい 粘性大			14	1.15	1 1	1	3/35	3 0	-		+	-			-	-				-				-
15					質粘	灰		かい	微砂混じる 貝殻片若干混じる			14 15	1.50 5.15	1 1	1	3	1	_		_	_			-	_				_				-
16	-15.00	3.00	16.00		±							15	5.48	15	8	33	3 0																
10									全体に均質 粘性大 目易は混じる			16	5.50	15	1	3/35	3 0																
17									Jaco Tale 0-0			17	7.15	1 1	1/9	3 31	3 0			+	_		-	-	-								-
18												17	7.46 8.15	1 1	1	3		_		_	_		_	-	_				_				-
10												18	3.49	14 11	9	34	30									IN	1a l	3					
- 19						暗						19	2.15	12	8	30	3 0	,															
20					粘	緑灰		軟ら	細粒状の貝殻片まばらに	混じる		20	2.15	1 1	1	3 30	3 0	,		+	_			-	-								-
21					+	<i>2</i> 暗		かい				20 21).45 L.15	1 1	1	3		_		+			-	-	-	ŀ			_				-
- 00						灰						21	1.45	<u> </u>	9	30	3 0																
- 44												22	2.50	1 1	15	35	3 0]	T							
23												23	3.15	1 1	2/15	4	3 4	-		+				-					\neg				-
24												23 24	3.50 4.15	1 1	1	3				+	_			-					_				-
- 25	-24.00	9.00	25.00									24	1.45	, .	1,	30	3 0																
20	-24.80	0.80	25.80	-111-	シルト§ 粘土	電時灰		軟らかい	微細砂混じる 貝殻片若干混じる			25	5.48	12 11	1	33	3 0																6/6
Floo				2.55							1	1			1.1	1.1	11								1	11				1	1		

図-7.1.11 ボーリング No.1 柱状図(つづく)

E 26					砂質シル ト	暗灰		軟ら かい	全体に細砂多く混じる 雲母片多く混じる	26.15	1/12	$\frac{1}{8}$	2/ 14	4 34	4	9						1					1
27	-25.90	1.10	26.9						微砂混じる 腐植物若干混じる	27.15	2/14	1/6	2	5/30	5	+++											
28				///					粘性大 細砂シーム状で所々挟む	27.45 28.15	2	2	2	6	1												1
E 20				-//	シル					28.49	13	2	11 2	34	5	0											
29				27	ト質	暗灰		中 位		29.15	13	-	1/9	32	6	•							Ma13				
E 30				41	粘土					30.15	2 12	2/ 11	2/8	6 31	6	•				-							1
31				//					31.00mより、微細砂多く混じる	31.15	2/12	2/12	2	6	6												
32	-30.95	5.05	31.9	///	zh					31.46	2	3/	3	6		\square	_						<u> </u>				1
					質シ	暗		硬	細砂全体に混じる 淡褐色ブロック状に挟む	32.47	3	12	3	32	8	9						'	r				
E 33	-32.80	1.85	33.80		ルト	灰		10	細砂薄層で挟む	33.15	12	3	9/9	31	9	d											
34	-33.70	0.90	24.7	2	シルト混 じり砂	暗灰	中ぐ らい		砂は全体に均一な細砂 砂質シルトブロック状で所々挟む	34.15	4	5	6	15 30	15		\mathbf{b}						As_L				
35	0.0.10	0.50	01.11		砂質シル	暗田		硬い	細砂多く混じる 度は物共工法ドス	35.15	3	4	4	11	,,,							Ι.					
36	-34.75	1.05	35.73		P.	灰			MMMM94THCS	35.45 36.15	13	15	19	47	1			_					<u>¥</u>				
- 07					粗砂	暗灰	密 な		上部、シルト若干混じる 含水大 ¢2~10mmの礫若干混じる	36.45	12	15	20	30	47												
E 31	-36,35	1.60	37.3	0.0.0					砂は粗砂。含水大 42~20mの円端多く泡にる	37.15	10	10	20	30	48					d							
38				0.000			非常			38.15	25	22	13	60 27	67								Dg1				6/7
= 39				0.000	砂礫	略灰	に 密		39.00m以深、漏水する。 φ50~70mm	39.15	29	28	3/1	60 21	86												
40	-39.25	2.90	40.2	0.0.0			<i>x</i>		の錬品仕する	39.36	16	5	4	25								1,	l				1
E	00.20	2.00	10.2						全体に均質 粘性大 目却に退じる	40.45			_	30	25			0				1	Γ.	41.00			
F 41									JANCH de C-S													1		41.80 D	n-1 (D	1
E 42																								41.80 42.60	n-2 (D	1
43																								42.60 43.40	n-3 (D	6/8
44						禄青田																		43.40 44.20	n-4 (D	11
-					粘土	へ ~ 暗		硬 い	試料Dn-5:先端部に細砂挟む														Ma12	44.20 44.90	n-5 (D	
40						緑灰																1		44.90 D	n-6 (D	1
46									試料Dn-7:細砂挟む。腐植物足じる 対象Dn-8:灰色の細胞ブロック特に															45.70 46.40 46.40	n-7 (D	1
47									ix+Dn-9. Dn-10: 細砂混じる															47.10 47.10	n-8 (D	
48																								47.90 D	n-9 (D	1
	-47.70	8.45	48.70				非常			48.90	24	36		60									4	48,75	-10 (D	
F 49	-48.40	0.40	49.40		粗砂	暗灰	にな非に		含水大。¢2~5mmの網礫混じる 全体に均一な細砂	49.09	5	3	4	19	95							1 1	\				mm
50	-49.00	0.60	50.00	22	相砂	⁴ 灰 暗灰	に否 非常		砂質シルトをシーム状に挟む シルト若干混じる。含水大	49,90 50.21	13	1/8	-	31	12	9	\leq	\leq									1
51	-50.00 -50.25	1.00 0.25	51.00 51.2		砂質シル ト	暗灰	2	硬い	#B9の薄層狭む 砂は微細砂で、全体に多く混じる 粘性中位	50.90 51.11	16	40	4/1	21	86												
52					細砂	暗灰	非常にな		全体に均一 シルトをシーム状に挟む	51.90	12	6	7	25 30	25			-0<		-							6/9
	-50.10		E0.11		シルト混 じり砂	暗灰	中ぐらい		砂は細砂。上部、小礫混じる 砂質シルトを薄層、プロック状で挟 む。腐植物混じる	52.20	60			60	1					-			0~53m PS検層				1111
E 53	-52.10	1.85	53.10			~	非中		所々に暗青灰色のシルト挟む	53.15 53.24	9			9	200							53.00	Dg2				1
54					粗砂	暗灰	市に密た		含水大														- 8-				
55	-53,70	1.60	54.70				12		砂は粗砂。含水大	5	3-	~!	58	ßm		を素 打	屈り	U	, 54	4~]	lm–						1
56					礫		非		練は円礫主体	🗄		で	Р	S	検	層(サン	スペ	い	ショ	\sim						
					混 じ り	暗灰	常に廃			注	토)		を	·実	訴	钜。 綻	課	は	2.9	参照							
57					砂		2								Γ							1					-
58	-57.33	3.63	58.3						58.20m以深、礫多く混じる	58.15	21	39 _8		60 18	100					-	-						6 11
										26.33																	

図-7.1.11 ボーリング No.1 柱状図(つづき)

当該地盤の概要は以下の通りである(自然地下水位-1.64m)。

- ① GL 0.00~-5.85m: 盛土・埋土: 1.9~4.75m は浚渫土, 4.75~5.3m の砂礫はスラグ。
- ② GL-5.85~-11.40m:上部沖積砂層(As U):シルトまじり砂,N値 3~14。
- ③ GL-11.40~-31.95m:沖積粘土層(Mal3):シルト~粘土,N値3~6。
- ④ GL-31.95~-35.75m:下部沖積砂層(As_L):砂質シルト~シルトまじり砂,N値8~15。
- ⑤ GL-35.75~-40.25m: 第1洪積砂礫層(Dg1): 砂礫主体, N值 47 以上。
- ⑥ GL-40.25~-48.70m:洪積粘土層(Ma12):粘土(サンプリングしたためN値は不明)。

⑦ GL-48.70~-58.33m:第2洪積砂礫層(Dg2):一部砂質シルト挟むが砂礫主体,N値50以上。
Ma12層(GL-41.00~-48.75m)をデニソンサンプラー(D-1~D-10)でサンプリング。

26	-25.90	1.10	26.90		砂質シル ト	暗灰	細砂全体に混じる								26.40	1-15			
27 28 29 30 31	- 20.05	5.05	21.05		シルト質粘土	暗灰	徴砂泥じる 総動教育+混じる 粘性大								27.40 27.50 28.40 28.50 29.40 29.50 30.40 30.50 31.40 31.50	T-16 T-17 T-18 T-19 T-20	N N	1a1	3
32	-30,93	1.85	31.90		砂質シルト	暗灰	細砂全体に混じる								<u> 32.48</u> 33.40	T-21 T-22	V		
34	-33,70	0,90	34.70	/	シルト混 じり砂	暗灰	均一な網砂			┢	-								
35	-34.75	1.05	35.75	Į.	砂質シル ト	暗灰	細砂多く混じる			ŀ									10 miles
36	-36.35	1.60	37,35		粗砂	暗灰	含水大 上部、シルト若干混じる												15
38 39 40	-39.00	2.65	40.00		<i>砂</i> 磲	暗灰	砂注粗砂, 含水大 #2~20mmの確認じる 円確主体								-			-	101/10 101100

図-7.1.12 ボーリング No.2 柱状図 (サンプリング孔) (つづき)

As 層 (GL-4.50~-11.50m) をトリプルサンプラーでサンプリング (Tri-1~Tri-7)。 Ma13 層 (GL-11.50~-33.40m) を水圧式サンプラーでサンプリング (T-1~T-22)。

また, As 層は別途 Bor.3 で GS サンプラーでもサンプリング(液状化強度の比較)。

(2) 標準貫入試験結果

図ー7.1.13 にボーリング柱状図と SPT による N 値, SPT 試料とサンプリング試料によるコンシ ステンシー特性,及び PS 検層(サスペンション法)による P 波速度 V_p , S 波速度 V_s の深度分布を 示す。なお,GL-53.2m 以深は PS 検層実施のために 5m 程度素掘りしたものである。

図-7.1.13(1)の柱状図とN値から、GL0.00~-5.85mは盛土・埋土層で(1.9~4.75mは浚渫土, 4.75~5.3mの砂礫はスラグ)、地下水位はGL-1.64mであった。GL-5.85~-11.40mはシルトまじり 砂で構成される上部沖積砂As_U層で、1深度を除きN値8以下なので、液状化発生の可能性が高 い。GL-11.40~-31.95mはN値3~6の沖積粘土Ma13層(層厚22.4m)である。GL-31.95~-40.25m は下部沖積砂層As_L層とN値≧47の第1洪積砂礫Dg1層である。GL-40.25~-48.70mは洪積粘土 Ma12層で(サンプリングしたのでN値は未測定),層厚は8.45mとやや薄い。さらに、その下(GL-48.70m以深)には少し砂質シルトを挟んだあと、N値≧100の第2洪積砂礫Dg2層が堆積してい る(掘削は58.33mで終了)。

図-7.1.13(2)のコンシステンシー特性から,Ma13 層はGL-26.0m付近を境に2層に分かれ,上部(GL-11.40~-26.0m)は貝殻片を含む海成粘土で,塑性は上下部で低く,中央で高い弓形分布を示す。これは海進から海退に向かう堆積環境の変化によるものである。下部(GL-26.0~-31.95m)の塑性も弓形分布を示すが,貝殻片を混入しなかったので,上部とは堆積環境が異なる汽水~淡水性粘土と考えられる。一方,Ma12層は層厚が薄く,上部のみが高塑性を示す。これは堆積後に上部が古大阪川によって削剥されたためであることがわかっている。塑性はMa13層よりもMa12層の方が高いのが特徴である(両粘土層の物理・力学特性の詳細は7.1.3を参照)。

図-7.1.13(3)の V_s , V_p から,表層のGL-4.85mまでの V_p は不飽和のため,やや小さい。Ma13層の V_s は140~180m/sと小さく、軟弱であることがわかる。Dg1層の V_s は340m/s,Ma12層の V_s は210~250m/s,Dg2層の V_s は330m/sであった。Dg2層はGL-58m以深も砂礫として続くので(V_s を測っていれば400m/s程度はあったと推定される)、工学的基盤と見なすことができる。

図-7.1.13 標準貫入試験(SPT)の結果

(3) 大型動的コーン貫入試験結果

図-7.1.14, 7.1.15 にそれぞれ全自動式(D社),半自動式(T社)の大型動的コーン貫入試験結果 を示す。試験結果のコメントは図内に示す(以下,同様)。

図-7.1.14 大型動的コーン貫入試験(全自動式 SRS-Y)の結果

図-7.1.15 大型動的コーン貫入試験(半自動式 SRS-T)の結果

(4) 中型動的コーン貫入試験結果

図-7.1.16にS社の半自動式の中型動的コーン貫入試験結果を示す。

図-7.1.16 中型動的コーン貫入試験(半自動式 MRS-0)の結果

(5) 簡易動的コーン貫入試験,SH型貫入試験結果

図-7.1.17 に簡易動的コーン貫入試験, SH 型貫入試験結果を示す。

(6) スウェーデン式サウンディング試験結果

図-7.1.18~22 にそれぞれ S 社, H 社, T 社, J 社のスウェーデン式サウンディング試験結果を示す。

図-7.1.19 スウェーデン式サウンディング試験(H社)の結果

図-7.1.21 スウェーデン式サウンディング試験(T社, 1cm ピッチ整理)の結果

図-7.1.23 3社のスウェーデン式サウンディング試験結果の比較

図-7.1.24~29 に S 社による ISO 仕様(ISO_SP+*ϕ*22 ロッド), (ISO_SP+*ϕ*19 ロッド), (JIS_SP + *ϕ*22 ロッド), 摩耗 SP のスウェーデン式サウンディング試験の比較を示す。

図-7.1.25 (JIS_SP+ Ø22 ロッド)スウェーデン式サウンディング試験結果 (S社)

図-7.1.26 (ISO_SP+ Ø19 ロッド)スウェーデン式サウンディング試験結果 (S 社)

図-7.1.27 摩耗 SP によるスウェーデン式サウンディング試験結果 (S社)

図-7.1.28 手動式と全自動式スウェーデン式サウンディング試験結果の比較(S社)

図-7.1.29 JIS vs ISO スウェーデン式サウンディング試験結果の比較(S社)

(7) SDS 結果

図-7.1.30, 7.1.31 に J 社の SDS 試験結果を示す。

(8) CPT 結果

図-7.1.32 に S&R 社の RI-CPT 試験結果を示す。

図-7.1.33 に H 社の CPT 試験結果を示す(比較のため S&R 社の結果も重ねて示す)。ただし, 深度 7.22mで貫入不能となった。

図-7.1.33 CPT 試験(H社)結果

(9) 簡易サンプラー試料の物理試験結果

図-7.1.34~7.1.37 に簡易サンプラー試料の物理試験結果を示す。

(10) Viboro Boring (S社) による柱状図

図-7.1.38, 39 に Viboro Boring (S社) による柱状図,物理試験結果および N 値の比較を示す。

標	標	層	深	柱	±	色	相	相	記	孔						標	準	页		人言	ĸ	験					.89	({()	(置試験	涗	料採	取	室内	掘
										内水位		1	0cmi	軍の	Į					Ν		何	ť						試験名				い試験	-10
p		107	nte	44-	ų		对	对		11/. m	深	ŧ	「撃[回数	撃回					_	0) -					深		および結果	深	泷	採	~	進
R	(m)	14.	12	八	IX.		瘀	积		/ 測	度	C	10	20	数/												度			度	料	取		д
								1		定月		5	5	5	員入品																番	方		
m	m	m	m	1	分	24	度	度	事 62~50mm程度の巖を混入する。	日	m	1	0 20	30	CIII)	10		20		30	-4	0	50	60	m	-		m	号	伍	~	в
Ε.,		0.90	0.9		砂礫	暗灰																												
				11 11 11 11 IL	砂質	暗		硬い	現況QL-0.90m付近、木片を混入する。	1.60	1.43	6513	2 3	3 8	12 30	_12.0	-	1													1-1	Р	物理	and and and
2		1.65	2.5		粘土	R		50	・不規則に中~粗砂を混入する。 含水量は中位~やや多い。 粘性は中位である。		2.13	5 3	2		5	3.8	ø	-												1	1-2	P	物理	- the
3									不均質である 編码を思えする		3:8	§ 11	5 24		39		1								_					2.54		D	44-100	- mp
÷.,					粘土	暗秘		非常柔らか	雪母片を少量混入する。 含水量は中位である。		3.43	0 5 4 9	5		0 45	0, 0	ĺ													1.0	9.P-3	1	40.41	and the second
4						174		10	粘性は中位である。		4.5	0			0	0.0	2														P-4	Р	物理	- mark
5		2.35	4.9		70.00	NR CIT					5, 13	5 2			3	2.6	7													dill.	P-5	Р	物理	- the
6		0.00			0248	喧厌			マトリックスは粗砂からなる。 含水量は多い。		5, 50	0 2	5		35		1								_					6.1	i i			- International Providence
					砂混じ り粘土	暗灰			含水量は中位である。粘性は中位		6, 5;	1 2 1	1 12	1	3 37	2.4	9													11	1-6	Р	物理	- The second
7					-		-		·ca5.		7.1	2	2	2	6	5,5	à													VIII	1-1	Р	物理	- International Providence
8									砂の粒子は不均一である。 不規則ににたとなずロック状態		8, 1	5	5	6	1.4		-	1	5						-					m	P-8	р	\$fe (12)	mhui
9					シル		非常に移		眉状に混入する。		8,43	51	i II	8	30		_	1												8.4			1975	linut
					ト質細	暗灰	親い一一中	1	当時方および貝殻方を嵌入する。 現況GL-10,80m付近より、シルト		9, 4	51	3	3	7 30	7.0		ø												9.4	1-9	Р	物理	and the second s
10					69		位心蔵い		の混入量多くなる。		10.1	5 2	3	3	8	7.5		¢												till	P-10	р	物理	$\frac{6}{4}$
11									古木氟は中位である。		10.4	5	2 12	8	32															10.11			44. 199	- Inter
19		6,00	11.5						不均質である。微細砂を混入する		11.4	* 13	2	3	33	6.1	1													11.48	1	P	49.22	- The second
				11	10質シ ルト	暗厌		来らかい	実母片を混入する。 含水量は中位である。		12.4	1	1	1	3 31	_2.9	4													12.4	P-12	Р	物理	and the
13		1, 50	13.0						粘性は中位である。		13.0	0	1	2	3	1.7	4								-					11	P-13	р	物理	- International
14					-			非常	不均質である。所々に雲母片、貝		13.5	2 11	8 13	21	52										-					11.6				- The second
l.,				110	シルト 質粘土	暗厌		に添かい	一鼓片及び植物片を混入する。 含水量は中位である。 載件は中位へのや違い		14, 5 15, 0	4 1	7 18	22	3 54	1.7	Ĩ													14.5	1	P	49.11	and and a
15									HILLIS FIL - Y Y 20 S		15.4	0	1 14	1	2	1.0	0														P-15	Р	物理	- Internet
16		3, 00	16.0	-	-						16.0	2		2	3	1.7	0								-					11/1	P-16	Р	物理	-
17											16.5	3 10 5	5 15	22	53		1								_					10.5	1			hand
											17,5	1 1	1 12	1	36 36	2.5	1													11.51	1-17	P	物理	
18											18.5	0	1	2	3	1.7	9														P-18	Р	物理	hum
- 19								非常	ほぼ均質である。		19.1	1		1	3	2.7	0	+		÷		-	-	-	-					1911	P-19	Р	\$11.PH	- the
20								に来ら	全体に、貝倣片をに捉入する。		19.4 20.0	8 1. 0	4	9	33		1													19.48				6
E.					粘土	灰		かい	色調は深度方向に従い、やや暗く なる。		20.5	0	9 13	2	3 51	1.8	1													20.51	P-20	Р	999.22	5
- 21						服		う柔ら	含水量は中位である。		21.1	1	1	2	4	3.3	9														P-21	Р	物理	luni
- 22								かい	粘性は強い。		22.1	1	1	10	30	3.0	0								-					-	P-22	р	勃理	mhun
23											22.4	5 1	1	9	30															23. 15	1			- mark
											23.0	6 1	7 14		4 31	3,9	Î													23.48	P-23	Р	物理	- Internet
24											74.9	0	1	2	3	1.9	¢														P-24	Р	物理	duni
25		9,00	25.0	1000				11:22	不均質である。		28.0	0		0	11	1.9	0	-				÷								25.00	1-25	р	物理	-
26		0,80	25.8	all'	シルト 質粘土	暗厌		に承か	表成方、只成方及び植物方を能入 する。 含水量は中位である。		25.4	11	8	19	47	1	1							_						25.1				
E				1 ¹ ¹	26.97		-	**	粘性は中位~やや強い。 不均質である。 微細砂 営む日を思えする		26. 0	1	2 13	1 6	5 31	4.8	0													24	P-26	P	物理	
27		1.20	27.0		粘土	暗灰		中位	含水量は中位である。 粘性は中位である。		27.1	1.2	2	2	6	5,8	9			T											1-27	Р	物理	hund
28											28.1				31		H	+		+		-		_						m		p	the star	- International
29					シル			1	不均質に所々微細砂および植物片 を混入する。		28.4	91	1	13	34			1.2						_						25.45	1	-	swith.	6
E					下質粘	帽灰		位	含水量は中位である。		29. 0	12	1 2	2	6 31	5.8	0													29.4	P-29	Р	物理	6
30					±				粘性は中位~やや強い。		30.1	3	3	2	8	7,7		à				1									1-30	Р	物理	- International
31		4,00	31.0	157	-	-					31.1		1 22	1	7	7.0				-		-	-	-						3	P-12	р	200 E	
39				1							31.4	T	1 11	1	30	r,0		T												31.4	1	r.	-to RE	
64				1	gh.				不均質である。所々に編砂を混入する。		32.9	3	2	28	7	6,8															P-32	P	物理	
33					混じ	暗		中位く	雲母片を混入する。		33.1	1	4	3	11	10.3		Y		+		F								m	1-33	р	物理	$\frac{6}{7}$
- 34				1	り粘土	R		硬い	含水量は中位である。		34.4 34.1	1	\$ 11	8	32		-	A		+		-	_	_		_				34			Sta rev	- International Contraction
- 25									粘性は中位である。		34.0	1	1 11	9	13	12.0		Î												31.4	1-34	1	初州	. the second
30		200		1							35, 4	1	4	4	12 30	12.0		0	-												1-35	P	物理	1000
36		_4,90	35.9		age age 11	122			砂の粒子は不均一である。		36.1		1	13	32	12.0		+		P	1	2		-	-					in)	P-36	р	物理	and and
37					標準じり粗砂	暗灰	密な		○ 2~5曲程度の単角線を混入する。 含水量は中位~やや多い。		36.4	1		9	30			-		-				_						36.4				- interest
-		1.60	37.5		-						37.4	1	0 13	17	39 30	39,0							0	1						32,4	P-37	h	初理	6
38					砂藏	暗青屋	非常なた	1-04	コア採取最大き50mm程度。 マトリックスは相砂及びシルトか		38.3	2	9 21	+	50 19	28.9		Τ		Г				1	0					33,3	1-38	Р	物理	8
39		1.78	18.2			100		-	らなる。 含水量はやや多い。		29.1 29 °	4	0 10		50	415.	4	+		+		+			-0					and	1-39	р	物理	<u>6</u> 9
												1	3		13						_	_								-				

図-7.1.38 Viboro Boring (Sam 社) による柱状図

図-7.1.39 バイブロボーリング試料(Sam社)による物理試験結果と №値の比較

(11) PS 検層の結果

図-7.1.40 に PS 検層の結果を示す。

P S 検層結果図

図-7.1.40 PS 検層の結果(深度 54m)

(12) 表面波探査(起震機式)の結果

図-7.1.41 に表面波探査(V社)の結果(測点 H-4, A-4)を示す。

7.1.3 土質試験結果

サンプリングした沖積砂(As)層,沖積粘土(Ma13)層,洪積粘土(Ma12)層の土質試験のうち,物理 試験は終了した。現在,圧密試験,一軸圧縮試験,一面せん断試験,液状化試験,変形特性試験を 実施した。

以下には、試料の基本情報として、サンプリング試料のシンウォールから押し抜いた際に測定した湿潤密度 *ρ* と推定含水比 *w* を**図ー7.1.42~図ー7.3.44** に示す。推定含水比 *w* は、*S*_r=100%と *ρ*_s=2.67g/cm³を用いて推定している。

図-7.1.44 洪積粘土 (Ma12) 層の湿潤密度 'tと推定含水比 w

3.1 沖積粘土 Ma13 層の物理, 力学試験結果

図-7.1.45, 7.1.46 に Ma13 層の物理, 力学試験結果の深度分布を示す。

図(1)の自然含水比 w_n ,液性限界 w_L ,塑性限界 w_p から,GL-26.0m 付近を境に2層に分かれ,上部(GL-11.40~26.0m) は貝殻片を含む海成粘土(本来のMa13層)で,塑性は上下部で低く,中央で高い弓形分布を示す。これは海進から海退に向かう堆積環境の変化によるものである。下部(GL-26.0~31.95m)の塑性も弓形分布を示すが,貝殻片を混入しなかったので,Ma13層とは堆積環境が異なる汽水~淡水性粘土と考えられ,大阪湾岸ではよく見られる南港層中部粘土層と呼ばれるものである²⁾。図(2)の液性指数 Lは一部を除き 0.7~0.5を示し,Ma13層としては比較的安定した状態にあることがわかる。図(3)の湿潤密度 \Box_L は土質試験供試体の値とシンウォールから試料を押し出した時に測定した値で示したが,両者はほぼ一致している。 \Box_L は当然ながら w_n が反映された分布となっている。図(4)の土粒子密度 \Box_L は 2.65g/cm³前後の値を示すが,GL-11.7m 付近では小さい値を取っている。図(5)の粒度含有率から,粘土分含有率は w_L と調和的であり,細粒分含有率は上下部とGL-26~27m 付近を除けば 95%以上である。

図(6) 圧縮指数 C_c は w_L と相似な分布で、両者の相関性が高いことがわかる。図中に示した C_{cr} は 高圧力域 (p=1256~2511kNm²) での圧縮指数を表しており、 C_c と C_{cr} の差は粘土の構造発達の程度 を表すが、Ma13 層の構造が発達していることがわかる。図(7)の圧密係数 c_v は w_L と逆相似な分布 となっており、GL-17~-23m では 40~50 cm²/d を示す。図(8)の圧密降伏応力 p_c は弓形分布を示し、 中央部は有効土被り E_{p_0} に近く正規圧密状態にあるが、上下部では過圧密状態となっており、特に 下部の過圧密性が高い。これは過去の地下水過剰揚水による圧密進行が履歴として p_c に残ってい るためと考えられる。図(9)の過圧密比 OCR も同様なことがいえる。図(10)の一軸圧縮強さ q_u は 全体的に p_0 とほぼ等しくなっている。図中に示した $q_u/2 \times 3$ (強度増加率 $s_u/p=1/3$ を仮定した p_c 相 当量)からも過圧密状態にあることが分かる。図(11)の非排水せん断強さ s_u は、定体積一面せん断 試験 (p_0 で圧密)によるものである。図中に示した $3s_u$ は p_c 相当となるため、やはり p_c と同様な深 度分布となっている。

図-7.1.45 弁天町沖積粘土 Ma13 層の物理特性(つづく)

図-7.1.46 弁天町沖積粘土 Ma13 層の力学特性(つづく)

図-7.1.46 弁天町沖積粘土 Ma13 層の力学特性(つづき)

3.2 洪積粘土 Ma12 層の物理, 力学試験結果

図-7.1.47, 7.1.48 に Ma12 層の物理, 力学試験結果の深度分布を示す。

図(1)の w_n, w_L, w_pから, Ma12 層は上部(GL-40.3~43.5m)のみが高塑性(w_L>100%)を示す。 これは Ma12 層堆積後に上部が古大阪川によって削剥されたためである³⁾。下部(GL-43.5~48.7m) はやはり堆積環境が異なる汽水~淡水性粘土と考えられる。図(2)の L は 0.5 前後を示し,安定し た状態にあることがわかる。図(3)の L はやはり供試体と押出時はほぼ一致し, w_n が反映された分 布となっている。図(4)の ρ_sは 2.65~2.70g/cm³の値を示す。図(5)の粒度含有率から,やはり粘土 分含有率は w_L と調和的であり,細粒分含有率は GL-46m 前後と下部を除けばほぼ 95%以上である。

図(6)の C。は、やはり wL と相似な分布で、両者の相関性が高いことがわかる。C。と Cer の差から、 やはり Ma13 層の上部で構造が発達していることがわかる。図(7)の c_v も wL と逆相似な分布となっ ているが、上部の GL-40.3~43.5m では 40 cm²/d 程度を示す。図(8)の p_c は、全体に p_0 よりも 150~ 250 kN/m² 程度大きく、かなり過圧密性が高いといえる。図(9)の過圧密比 OCR も同様なことがい える。図(10)の q_u は、かなりばらついているが、これは洪積粘土の q_u は貝殻や砂分混入、及び縦 割れ等の影響で過小に得られているためと考えられる。図(11)の定体積一面せん断試験 (p_0 で圧密) による s_u 及び $3s_u$ から、やはり過圧密性が確認できる。ただし、GL-46m 以深の s_u はやや過小に得 られているようである。

3.3 沖積砂層(As層)の液状化試験結果

図-7.1.49 に As 層の液状化試験結果(左列:ねじり,右列:三軸)を示す。表-7.1.2 に結果のまとめを示す。

図-7.1.49 As 層の液状化試験結果(左列:ねじり,右列:三軸)(つづく)

大阪市港区弁天町									
試料名	中心深度	ひずみで整理		水圧で整理		ひずみで整理			
		中空ねじり	三軸	中空ねじり	三軸	ねじり/三軸	ねじり-三軸		
Tri-2	5.59	0.337	0.240		0.240	1.40	0.10		
Tri-13	6.95	0.328	0.283		0.234	1.16	0.05		
Tri-4	7.99	0.299	0.296	0.350	0.282	1.01	0.00		
Tri-5	8.99	0.318	0.278		0.257	1.14	0.04		
Tri-6	9.97	0.379	0.303		0.265	1.25	0.08		
Tri-7	11.00	0.333	0.313		0.352	1.06	0.02		

表-7.1.2 As 層の液状化試験結果

図ー7.1.50に As 層の液状化強度の深度分布を**図ー7.1.51**に As 層のねじりと三軸の液状化強度の比較を示す。

7.2 弁天町地区での常時微動アレイ観測

7.2.1. 常時微動アレイ観測

常時微動とは,波浪や風などの自然現象や交通振動などの人間活動によって生じる地盤振動であ る。振動の振幅は非常に小さいが,常時発生している振動であるため,時期を問わず観測をするこ とができる。常時微動を用いた物理探査手法には様々なものがあるが,ここでは地表に展開した複 数台の微動計によって地盤の情報を抽出しようとする常時微動アレイ観測法を利用する。

常時微動アレイ観測では、表面波の位相速度を推定することを目的としている。この位相速度の 推定法として f-k 法や SPAC 法、CCA 法などが提案されており、手法毎に微動計の配置方法に制約 がある。CCA (Centerless Circular Array) 法は、SPAC (空間自己相関) 法を一般化したものであり、 近年注目されている。SPAC 法では地表に円を設定し、円の中心に1台、円周上に等間隔に複数台 の微動計を配置する必要があるが、CCA 法では円の中心の微動計を必要としない。また、SPAC 法 では 0 次のベッセル関数で表される SPAC 係数によって位相速度を推定するが、CCA 法ではより 高次のベッセル関数を使うために低周波数側の感度が良好であるという特徴がある。いずれにせよ、 円の中心とその円周上に微動計を配置して常時微動を測定すれば、SPAC 法と CCA 法の両主法に よって位相速度を抽出し、比較検討できる。

常時微動アレイによって推定された上下動の位相速度は,Rayleigh 波の基本モードであると仮定 される場合が多い。このため、地盤の速度構造から計算される Rayleigh 波基本モードの位相速度と 比較することができる。言い換えれば、観測された位相速度を説明できるように、地盤の速度構造 を推定することができる。特にS波速度に対する感度が高いことから、地盤のS波速度を推定する 探査法と捉えることができる。さらに、アレイ半径を広くすることで低い周波数帯域まで位相速度 を推定できることから、深いS波速度の推定も可能となる。SPAC 法の場合、一般的にアレイ半径 の5倍程度の深度まで推定できるとされるが、大規模なアレイであるほど振動環境や測定条件に左 右されることに注意が必要である。

7.2.2 観測条件

弁天町サイトでは以下の条件で常時微動アレイ観測を実施した。アレイ半径は大きいほど望ましいが,その一方,アレイ内部に振動源があると手法の仮定が満たされなくなる。現地の状況を鑑み, 敷地内で設定できる最大限のアレイまでを実施することとした。

- 実施日:2018年7月4日
- 使用機材: 地震計(JU210) 4 台
- 地震計配置:円形アレイ(中心1台,円周上3台)
- アレイ半径:2m, 5m, 10m
- 計測時間:アレイ毎に30分の連続観測

図-7.2.1に常時微動アレイ観測時の地震計配置と観測状況を示す。

(1) アレイ半径 2m

(2) アレイ半径 5m

(3) アレイ半径 10m 図-7.2.1 常時微動アレイ観測時の地震計配置と観測状況

7.2.3 推定位相速度

アレイ毎にデータを取りまとめ、SPAC 法、CCA 法によって上下動の位相速度を推定した。図-7.2.2 はアレイ毎、手法毎に得られた位相速度を示したものである。また、現地の速度検層結果を 用いて計算した Rayleigh 波基本モードの位相速度を併せて示している(黒点線)。アレイ半径が小 さいほど高周波数側で安定し、アレイ半径が大きいほど低周波数側の位相速度を推定できているこ とがわかる。SPAC 法、CCA 法いずれも理論位相速度と良い一致を示すことから、速度検層結果の 妥当性が言える。また、観測位相速度は 1.0Hz 付近まで順分散を示しており、500m/s 程度の速度ま で見えていることから、速度検層より深い地盤の情報が抽出できているものと考えられる。

図-7.2.2 CCA 法と SPAC 法による推定位相速度と理論位相速度の比較

7.3 弁天町地区での電気探査結果

7.3.1 物理探査による土地変遷把握

前章で示した様に,盛土上では振動特性が基礎地盤 と異なる。造成過程が明らかであれば,基礎の土質性 状および盛土材料の材料特性を与えることで,盛土上 で観察される地震波の予測も可能であるが,既存の造 成地では,盛土範囲や盛土厚さとともに,土質特性を 知ることも困難である。物理探査はボーリングサンプ ルの力学試験やサウンディングと異なり,地盤性状を 面的に捉えることができるため,広範囲の地盤調査に 適している。しかしながら,間接的な物理量から土質 定数を推定する必要があるため,土質のみならず地形 や地下水に含まれる溶解物質などの影響も受けるた

図-7.3.1 表面波探查¹⁾

め、地盤性状の定量的な評価のためには他の試験と併用しキャリブレーションを行う必要がある。ここ では、物理探査の中でも表面波探査と電気探査に注目し、物理探査の信頼性照査、実務への適用性につ いて検討を行う。

(1) 表面波探査,電気探査の概要

ハンマーなど地表に打撃を与えると、レイリー波と呼ばれる表面波が地表付近に沿って伝播する。このときの速度は S 波速度の 0.9~0.95 倍であり、地表面に垂直な方向に大きく振動する波となる。振動 エネルギーは地表面で大きく、深くなる程に減衰するため、およそ波長に相当する深さまでの地盤の S 波速度値を反映する。また、表面波の速度は波長に依存して変化する。表面波探査では、地表面上に複数の加速度計を設置し、表面を伝播する波を捉えて解析することで、地盤内の S 波伝播速度分布を知る ことができる(図-7.3.1)。得られた S 波速度は、地盤の工学的評価に適応性が高く、地盤剛性と良い相関

	配置および見掛け比抵抗表示点	電極配置係数(G)	見掛け 探査深さ	特徵
ポール・ポール法 (二極法)	$\begin{array}{ccc} & & & & \\ C_{e} & & C_{1} & P_{1} & P_{e} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ \end{array}$	2πа	a	受信電位差が大きく、作業性がよい。感度が小さく、概査に 適す。同一探査測線長では、より深部まで探査できる。比据 抗法二次元探査で用いることが多い。測定値から、他の電極 配置データを計算できる。送・受信遠電極の設置が必要。
ポール・ ダイポール法 (三極法)	$\begin{array}{ccc} C_{*} & \overbrace{C_{1}}^{na} \xrightarrow{a \rightarrow} a \rightarrow \\ \hline P_{1} & P_{2} \\ \hline \end{array}$	$2n(n+1)\pi a$	$\frac{2n+1}{4}a$	ボール・ボール法より感度がよい。ダイボール・ダイボール 法より作業性がよく、ノイズの影響を受けにくい。水平探査 や比抵抗法二次元探査に用いる。 探査結果が電極配置の非対称の影響を受ける。 送信遠電極の設置が必要。
ダイボール・ ダイボール法 (四極法)	$\begin{array}{cccc} & & & & & & \\ \hline C_1 & C_2 & & P_1 & P_2 \\ \hline & & & & & \\ \hline \end{array}$	$n(n+1)(n+2)\pi a$	$\frac{n+1}{2}a$	感度が大きく、分解能が高い。受信電位は小さい。断層のような垂直構造の調査に適す。水平探査や比抵抗法二次元探査 に用いる。n=1に固定して、aを広げる方法をエルトラン法 とよぶことがある。
ウェンナー法	$\begin{array}{c c} & -a \rightarrow \\ \hline C_1 & P_1 & P_2 & C_2 \\ \hline & & & \\ \hline & & & \\ a \end{array}$	2πа	a	受信電位差が大きく、作業性がよい。 水平多層構造の調査に適す。 垂直探査,水平探査および比抵抗二次元探査にも適用でき る。
/ユランベルジャ法	$\begin{array}{c} & & & & & & \\ & & & & & & & \\ C_1 & P_1 & P_2 & C_2 \\ \hline & & & & & \\ \end{array}$	$m(m+1)\pi a$	$\frac{2m+1}{2}a$	電流電極 C;C;即隔が電位電極 P;P;の5倍以上になるように 電極を移動する。 垂直探査,特に100m以深の深部探査に適す。

表-7.3.1 電気探査における電極配置とその特徴¹⁾

C1, C2:電流電極, P1, P2:電位電極, C., P.,:遠電極, a:電極間隔 (m), m, n:電極隔離係数

があるとされている。

電気探査は、地盤に直流電流を通じた際に地表に生じる電位応答より、地下の比抵抗分布を求める手法である。1 対の送信電極(C_m, C_n)と1 対の受信電極(P_m, P_n)を用い、送信電極で発生した電位差と受信電極における電位差を元に受信電極間の地盤の見かけの比抵抗が計測される。ここで、見かけの比抵抗と

しているのは,得られるものが電極 間の平均の比抵抗を示すからであり, 電極を高密度に設置することで,よ り解像度の高い比抵抗分布を得るこ とができる。4本の電極の配置方法は, 多くの組み合わせがあり,主な電極 配置の特徴を表-7.3.1にまとめる。得 られる地盤の電気比抵抗は,地層の 間隙率,水分飽和率,間隙水比抵抗, 粘土鉱物含有量,温度など,多くの 要因により変化するが,同じ土質で あれば間隙率×水分飽和率=体積含 水率分布を反映したものとなる。

(2) 弁天町におけるサウンディング調査との比較

先に示した様に,物理探査では得 られる物理量の定量的評価が問題 となる。そこで,詳細なボーリング 調査に加えて,種々のサウンディン グ調査を行っている弁天町の現場 において表面波探査, 電気探査を実 施し, データの比較から物理探査の 信頼性検証を行う。図-7.3.2 にボー リング,サウンディング調査位置と 探査測線の位置関係を示す。中央赤 点線を探査中心としている。 表面波 探査では加速度計を 1m 間隔で 24 個, 電気探査では 32 本の電極を 1m 間隔で設置した。電気探査では、電 極配置による探査特性を確認する ために,ポール・ポール法とダイポ ール・ダイポール法を採用した。

図-7.3.3 に,表面波探査によって

図-7.3.2 弁天町探査測線

図-7.3.3 S 波速度分布(測線 No.1)

得られた, S 波速度分布を示す。測線 距離程の 6.5~16.5(m)位置でサウンデ ィング調査が行われている。探査測線 上に建屋があったことで, 測線 No.1 と No.2 で測線長が異なっている。測線 No.1 では、建設資材を置いていた箇所 に近かったため, 地表面に打撃を加え た際に建設資材と共振していたこと, また交通量の多い道路に面していたた め、受信波に相当なノイズが含まれて おり、それらを取り除いた結果、得ら れたS波速度分布の解像度が落ちてし まった。測線 No.2 は,得られた結果に フィルターをかけることなく整理した ので、こちらをもとにサウンディング 調査との比較を行う。図中の赤い部分 程,S波速度が大きい領域を示す。図 からサウンディング調査範囲内では, 深度 4m および 9m のあたりに S 波速度 の高い領域が確認できる。ボーリング 調査では、深度 4~5m のあたりに砂礫 層が確認されており,表面波探査でも この層を捉えているものと考える。PS 検層はボーリング孔を用いて弾性波速 度の深さ方向の分布を測定する物理検 層である。S 波速度を計測するという 意味で、表面波探査と原理は同じであ る。図-7.3.5 に表面波探査と PS 検層に よって得られた S 波速度分布を比較す る。表面波探査で得られた S 波速度の 方がやや高い傾向を示すものの,深度

図-7.3.7 標準貫入試験との比較

7~8m ぐらいまではよい一致を見せている。表面波探査では地表面で与えた振動が,深部に行くほど減 衰するので,可能探査深度は高々15m 程度であるとされている。そのため,深部行くほど PS 検層との 乖離がみられる。他のサウンディング調査との比較を行うために,得られた S 波速度分布を N 値に変換 する必要がある。S 波速度と N 値の相関については,様々な提案式が与えられている。ここでは,次式 で示す Imai and Tonouchi(1982)の式を用いる。

$$N = \left(\frac{V_s}{97}\right)^{\frac{1}{0.314}} \tag{1}$$

ここで、N はN値、V, はせん断波速度(m/s)である。図-7.3.6 に、式(1)を用いてS 波速度をN値に変換して求めた測線 No.2 のN 値分布を示す。図-7.3.7~7.3.11 で、それぞれ標準貫入試験、中型動的コーン貫入試験、スウェーデン式サウンディング試験、ISO および JIS 仕様スウェーデン式サウンディング 試験、手動式スウェーデン試験から得られた換算N値と表面波探査から得られたN値を比較する。多 少バラツキは見られるものの、各種サウンディング試験とよい一致を見せている。ただし、PS 検層との 比較でも見られたように深くなるほどに精度は落ちると言える。

電気探査を行うにあたって、ポール・ポール法では同一測線長ではより深い探査深度を得ることがで きることから、よく用いられるが、遠電極を設置する必要がある。遠電極は測線長の3倍を目安とする ため、探査実施場所の制約を受ける。弁天町の現場では測線から25m程離れた位置に遠電極を設けるこ とができた。図-7.3.12、7.3.13にそれぞれ測線No.2のポール・ポール法、ダイポール・ダイポール法で 行った電気探査の結果を示す。赤い部分程、電気比抵抗が大きいことを示す。ポール・ポール法と、ダ イポール・ダイポールによる探査結果に違いがみられないことから、現場の制約条件によって2つの電 極配置法を使い分けることができることが示された。本現場は、粘土層と砂層の互層を成しているが、 土質の違いは明確には確認できない。ボーリング調査では2.0m深度あたりに地下水位があるが、電気 比抵抗が緑色から青色に変化するあたりと一致している。電気比抵抗は含水率との相関が高いとされて おり,探査結果の妥当性が伺える。 しかし,地下水位以下の領域の分解 能は低く,ここではある深度に注水 のような圧力分布を有する深度があ ることが報告されているが,それに 関しては表現できていない。つまり, 地下水位付近の毛管帯(飽和度が高 く負の水圧を有する領域)が探査結 果として現れると考えられる。

表面波探査,電気探査の結果はサ ウンディング調査の結果とはやや異 なるものの,全体的にはよい相関を 見せていることから,浅層の地盤性 状を面的に把握するのに有効である と言える。

CD-ROMに含まれる内容
 ・観測された数種の地震動から推定される地震動特性値が保存されています。
 PGV増幅率.csv:地表最大速度の増幅率
 PGV増幅率.csv:地表最大加速度の増幅率
 1-2Hz増幅率.csv:伝達関数の1-2Hzの増幅率
 2-4Hz増幅率.csv:伝達関数の2-4Hzの増幅率
 ・上記の各ファイルの内容は以下のとおりでです。ファイル形式は、ASCIIファイル形式(カンマ区切り)です。
 1行目:項目行
 2行目以降:データ行
 〔並び順に、ID、座標(世界測地系),増幅率(26種)〕

○利用上の注意

・当情報は、地盤情報に基づいた平均的な特徴を表したものです。実現象を表すものではありません。

・当情報のいかなる部分も,いかなる形態およびいかなる手段によっても,公益社団法人地盤工学会関西支部 および公益社団法人地盤工学会関西支部 関西の地盤情報に基づく防災ハザードマップ開発研究委員会への書 面による事前の許可なく,複製,転送,転写およびWebを含む検索システムへの格納を行うことはできません。

・当情報を利用した研究成果の公表には、下記のような標記で引用を明記してください。

公益社団法人地盤工学会関西支部 関西の地盤情報に基づく防災八ザードマップ開発研究委員会(2019):委員会報告書CD-ROMのデジタルデータを利用

…公益社団法人 地盤工学会関西支部 および公益社団法人地盤工学会関西支部 関西の地盤情報に基づく防災八 ザードマップ開発研究委員会は、利用者が当情報を用いて行う一切の行為について、直接・間接損害、特別損害、逸失利益などのいかなる損害を生じた場合においても、利用者に対する賠償責任を負いません。

関西の地盤情報に基づく防災ハザードマップ開発研究委員会 報告書

- 編集者 公益社団法人 地盤工学会関西支部 関西の地盤情報に基づく防災ハザードマップ開発研究委員会 委員長 大島 昭彦
- 発行者 公益社団法人 地盤工学会関西支部
 大阪市中央区谷町1丁目5番7号 ストークビル天満橋801号室
 Tel (06)6946-0393 Fax (06)6946-0383

発行年月 平成 31 年 3 月

©2019 (公社) 地盤工学会関西支部 不許複製